期刊文献+

一组组合关系式

SOME COMBINATORIAL RELATIONS
下载PDF
导出
摘要 本文用组合分析的方法及数学归纳法证明了以下一些组合关系式. (1)C(n+k,r)=sum from m=0 to k (k!)/((k-m)!m!)C(n,r-m); (2)sum from m=0 to n K^m C(n,m)=*(1+k)~n; (3)sum from k=0 to n K^m=sum from k=1 to n S(m,k) ((n+1)!)/((k+1)(n-k)!); (4)sum from p=0 to m F(n,p)=((n+m)!)/(n!m!); (5)sum from q=1 to m qF(n,q)=((n+m)!n)/((m-1)!(n+1)!); (6)sum from p=1 to n F(p,m)=((n+m)!)/((m+1)!(n-1)!); (7)sum from r=0 to S (F_(mi2r)F_(n+2r)+F_(m+2r+1)F_(n+2r+1)); =F_(2??+1)(F_(2??+1)F_(m+n+1)+F_(2??)F_(m+n)); (8)sum from k=0 to n C_k=C_(n+5)-2; (9)S_k??5=sum from p=0 to n C_(k+5??)=C_(5n+1+k+γ_(k,5)); In this paper, authors using the method of mathematical induction have proved several combinatorial relations in combinatorial analysis and obtained the several combinatorial identical relations of the sequence {C_n}: C_(u+1)=C_(u-1)+C_(a-2).
出处 《青海师范大学学报(自然科学版)》 1990年第3期10-16,共7页 Journal of Qinghai Normal University(Natural Science Edition)
关键词 递推关系 组合分析 数学归纳法 Recursive relation, Combinatorical analysis, Mathematical induction.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部