期刊文献+

维甲酸联合曲古抑素对甲状腺癌细胞的诱导分化作用 被引量:3

Combined effects of all-trans-retinoic acid and trichostatin A on the induction of differentiation of thyroid carcinoma cells
下载PDF
导出
摘要 背景与目的:维甲酸诱导甲状腺癌分化的有效率约30%,但其毒副作用限制了临床应用。两种以上诱导剂联合应用于肿瘤的分化,临床已开展了Ⅰ~Ⅲ期试验。但对维甲酸和组蛋白脱乙酰基酶的抑制剂的联合应用,未有报道。本试验初步研究全反式维甲酸(retinoic acid,RA)联合曲古抑素(trichostain A,TSA)诱导人乳头状甲状腺癌细胞株(K1)和人滤泡状甲状腺癌细胞株(FTC-133)的分化,增强诱导作用的效果,同时降低单一药物的毒副作用,为临床前期试验提供理论依据。方法:RA联合TSA,分为4种浓度,分别为1组RA1×10-4mol/L+TSA1.65×10-7mol/L、2组RA1×10-4mol/L+TSA3.31×10-7mol/L、3组RA1×10-5mol/L+TSA1.65×10-7mol/L、4组RA1×10-5mol/L+TSA3.31×10-7mol/L,在3个时间点(12、24、48h)处理两种细胞后,采用苏木精-伊红染色后,观察细胞生长的数量、形态;采用氮蓝四唑盐法(methythiazoly ltetrazolium,MTT)计算细胞生存率(survival rate,SR),研究联合药物对细胞的增殖、抑制和毒性作用;采用电化学发光法测定两种细胞株培养液中,甲状腺球蛋白(thyroglobulin,Tg)的水平,研究联合药物对肿瘤细胞的诱导分化作用。结果:联合药物作用K1和FTC-133后,细胞形态趋于规则,细胞间隔增大,细胞核明显缩小。4种浓度、3个时间点SR的方差分析,K1的F值分别为:23.52、170.14,FTC-133的F值分别为:57.09、224.35(P=0.000,均<0.01),有统计学意义。SNK分析,SR由低到高的排列分别为:2组<1组<4组<3组。4种浓度、3个时间点Tg方差分析,K1的F值分别为:69.63、101.07,FTC-133的F值分别为:79.77、81.72(P=0.000,均<0.01),差异有统计学意义。LSD两两比较:K1和FTC-133的1组与3组比较,P分别为:0.06、0.2,>0.05,两者之间差异无统计学意义,其他组均有统计学意义。结论:低浓度RA联合低浓度TSA,既可以抑制K1和FTC-133增殖,降低药物毒性作用,又可以增强对肿瘤细胞的诱导分化。其可能的机制是,TSA作用于转录步骤的DNA前调节,RA可能作用于转录步骤的信号后续调节,两种作用可能形成增强作用。通过转录后的传导系统,达到了抑制肿瘤细胞增殖和增强诱导分化的作用。 Background and Objective:The effectiveness rate of all-trans-retinoic acid (RA) is only about 30% in the clinical application of inducing thyroid carcinoma differentiation. In addition,there are severe toxic side effects,which limit its clinical application. Phase Ⅰ-Ⅲ clinical studies have been conducted on the combined application of two or more kinds of inductors in tumors. Nevertheless,the combination of RA with histone deacetylase inhibitors is rarely reported. This article studied the effects of differentiation for papillary thyroid carcinoma and follicular thyroid carcinoma cell lines induced by RA combined with trichostatin A (TSA),enhancing the effect of induction,while reducing the toxic side effects of a single drug,to provide a theoretical basis for preclinical trials. Methods:After incubation with RA combined with TSA,K1 and FTC-133 were grouped into Group 1 (RA 1×10^-4 mol/L plus TSA 1.65×10^-7 mol/L),Group 2 (RA 1× 10^-4 mol/L plus TSA 3.31×10^-7 mol/L),Group 3 (RA 1× 10^-5 mol/L plus TSA 1.65×10^-7 mol/L),Group 4 (RA 1×10^-5 mol/L plus TSA 3.31×10^-7 mol/L) by four varied concentrations and three time points (12,24,and 48 h). The cell proliferation,conformation,toxic effect,and induced differentiation on K1 and FTC-133 cell lines were studied microscopically with hematoxylin-eosin (HE) to observe cell quantity and morphology,methyl-thiazolyl-tetrazolium (MTT) to calculate cell survival rates,and electrochemiluminescence analysis to measure in vitro thyroglobulin (Tg) levels. Results:The research showed that K1 and FTC-133 cells had cell spacing increases,with an outer edge of smooth,nuclear chromatin condensation after RA combined TSA. Survival rates were assessed by an analysis of variance (ANOVA) by concentration and time point,F values of K1 were 23.52 and 170.14,and F values of FTC-133 were 57.09 and 224.35,respectively. There were significant differences for both cells ( P〈0.01). The SNK analysis indicated that survival rates were in the order of Group 2〈Group 1〈Group 4〈Group 3. Tg was also assessed by ANOVA,F values of K1 were 69.63 and 101.07,and F values of FTC-133 were 79.77 and 81.72 ( P〈0.01). Group 1 was compared with Group 3 of K1 and FTC-133 by the least significant difference (LSD) method,and there was no statistical difference between the two groups ( P=0.06,0.20,respectively,P〉0.05),yet a significant difference was seen between the other groups. Conclusions:Lower concentrations of RA combined with lower concentrations of TSA have both inhibited cell proliferation,decreased toxicity of the drugs,and increased the effect of K1 and FTC-133 cell differentiation. The mechanism of action may be that TSA has pretranscription DNA regulation and that RA has posttranscriptional signal regulation to enhance the effects ofinhibited proliferation and differentiation of cells by transcription systems.
出处 《癌症》 SCIE CAS CSCD 北大核心 2010年第4期415-421,共7页 Chinese Journal of Cancer
基金 重庆市科委自然科学基金(No.2007BB5310)~~
关键词 维甲酸 曲古抑素 分化型甲状腺癌 All-trans-retinoic acid (RA) Trichostain A (TSA) differentiated thyroid carcinoma (DTC)
  • 相关文献

参考文献19

  • 1Mazzaferri EL, Massoll N. Management of papillary and follicular thyroid cancer: new paradigms using recombinant human thyrotropin [ J ]. Endocr Relat Cancer, 2002, 9(4):227-247.
  • 2Schlumberger M. Papillary and follicular thyroid carcinoma [ J]. N Engl J Med, 1998,338 (5) :297-306.
  • 3Goretzki PE, Simon D, Frilling A, et al. Surgical reintervention for differentiated thyroid carcinoma [ J]. Br J Surg, 1993,80(8) :1009-1012.
  • 4Haugen BR. Management of patient with progressive radioiodine non-responsive disease [ J ]. Semin Surg Oncol, 1999,16( 1 ) :34-41.
  • 5Piekarz RL, Sackett DL, Bates SE. Histone deacetylase inhibitors and demethylating agents: clinical development of histone deacetylase inhibitors for cancer therapy [ J ]. Cancer,2007, 13 ( 1 ) : 30-39.
  • 6Nolan L, Johnson PW, Ganesan A, et al. Will histone deacetylase inhibitors require combination with other agents to fulfil their therapeutic potential? [ J]. British J Cancer, 2008,99 : 689 -694.
  • 7Castaigne S, Chomienne C, Daniel MT, et al. All-trans retinoic acid as a differentiated therapy for acute promyelocytic leukemia I clinical results [ J ]. Blood, 1990,76(9) : 1704-1709.
  • 8Grunwald F, Menzel C, Bender H, et al. Redifferentiation therapy-induced radioiodine uptake in thyroid cancer [ J ]. J Nucl Med, 1998,39 : 1903-1906.
  • 9Simon D, Kohrle C, Krausch M, et al. Clinical impact of retinoids in redifferentiation therapy of advanced thyroid cancer : final results of a pilot study [ J ]. Eur J Nucl Med Mol Imaging, 2002,29 : 775-782.
  • 10Short SC, Suovuori A, Cook G, et al. A phase Ⅱ study using retinoids as redifferentiation agents to increase iodine uptake in metastatic thyroid cancer [ J ]. Clin Oncol,2004,16:569-574.

二级参考文献35

  • 1张雯杰,郑容,林琳,李家琇,贾莹莹,刘琳,陈盛祖.维甲酸诱导分化在分化型甲状腺癌治疗中的初步应用[J].实用癌症杂志,2005,20(4):396-398. 被引量:3
  • 2张一帆,贾士铨,李彪,刘勇,王朝晖,朱承谟.维甲酸诱导分化治疗甲状腺癌的临床研究[J].中华内分泌代谢杂志,2006,22(2):101-104. 被引量:5
  • 3Simon D, Koehrle J, Reiners C, et al. Redifferentiation therapy with retinoids: therapeutic option for advanced follicular and papillary thyroid carcinoma. World J Surg, 1998,22:569-574.
  • 4Kurebayashi J, Tanaka K, Otsuki T, et al. All-trans-retinoic acid modulates expression levels of thyroglobulin and cytokines in a new human poorly differentiated papillary thyroid carcinoma cell line, KTC- 1. J Clin Endocfinol Metab,2000,85:2889-2896.
  • 5Masaki K, Robey R, Zhirong ZH, et al. Low concentration of the histone deacetylase inhibitor, depsipeptide ( FR901228 ), increase expression of the Na +/I-symporter and iodine accumulation in pooly differentiated thyroid carcinoma cells. J Clin Endocrinol Metab, 2001, 86:3430-3435.
  • 6Frank G, Christian M, Hanks B, et al . Redifferentiation therapyinduced radioiodine uptake in thyroid cancer. J Nucl Med, 1998,39 : 1903-1906.
  • 7Simon D, Koehrle J, Reiners C, et al . Redifferentiation therapy with retinoids : therapeutic option for advanced follicular and papillary thyroid carcinoma. World J Surg, 1998,22:569-574.
  • 8Simon D, Kohrle C , Krausch M, et al. Clinical impact of retinoids in redifferentiation therapy of advanced thyroid cancer: final results of a pilot study. Eur J Nucl Med Mol Imaging, 2002,29:775-782.
  • 9Short SC, Suovuori A, Cook G, et al. A phase Ⅱ study using retinoids as redifferenfiation agents to increase iodine uptake in metastatic thyroid cancer. Clin Oncol, 2004,16:569-574.
  • 10Goldsmith S J . Section C :Thyroid and parathyroid neoplasia. Edited by Khalkhali I. Nuclear Oncology. Philadephia: Lippincott Williams Wilkins, 2001,204.

共引文献12

同被引文献51

  • 1张一帆,贾士铨,李彪,刘勇,王朝晖,朱承谟.维甲酸诱导分化治疗甲状腺癌的临床研究[J].中华内分泌代谢杂志,2006,22(2):101-104. 被引量:5
  • 2刘勇,贾士铨,张一帆,郝卫东.全反式维甲酸诱导再分化治疗甲状腺癌的临床研究[J].肿瘤防治研究,2006,33(9):675-678. 被引量:6
  • 3Dohan O, De la Vieja A, Paroder V, et al. The sodium/iodide Symporter (NIS) : characterization, regulation, and medical significance. Endocr Rev, 2003, 24: 48-77.
  • 4Schreck R, Schnieders F, Schmutzler C, et al. Retinoids stimulate type Ⅰ iodothyronine 5'-deiodinase activity in human follicular thyroid carcinoma cell lines. J Clin Endocrinol Metab, 1994, 79: 791-798.
  • 5Kurebayashi J, Tanaka K, Otsuki T, et al. All-trans-retinoic acid modulates expression levels of thyroglobulin and cytokines in a new human poorly differentiated papillary thyroid carcinoma cell line, KTC-1. J Clin Endocrinol Metab, 2000, 85: 2889-2896.
  • 6Weiss SJ, Philp NJ, Grollman EF. Iodide transport in a continuous line of cultured ceils from rats thyroid. Endocrinology, 1984, 114: 1090-1098.
  • 7De los Santos M, Zambrano A, Aranda A. Combined effects of retinoic acid and histone deacetylase inibitors on human neuroblastoma SH-SY5Y cells. Mol Cancer Ther, 2007, 6 : 1425-1432.
  • 8Sirchia SM, Ren M, Pili R, et al. Endogenous reactivation of the RARbeta2 tumor suppressor gene epigenetically silenced in breast cancer. Cancer Res, 2002, 62: 2455-2461.
  • 9Suh YA, Lee HY, Virmani A, et al. Loss of retinoic acid receptor beta gene expression is linked to aberrant histone H3 acetylation in lung cancer cell lines. Cancer Res, 2002, 62 : 3945-3949.
  • 10Liu T, Bohlken A, Kuljaca S, et al. The retinoid anticancer signal : mechanisms of target gene regulation. Br J Cancer, 2005,93 : 310-318.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部