期刊文献+

A de novo originated gene depresses budding yeast mating pathway and is repressed by the protein encoded by its antisense strand 被引量:7

A de novo originated gene depresses budding yeast mating pathway and is repressed by the protein encoded by its antisense strand
下载PDF
导出
摘要 介绍研究的最近的抄写在真核细胞的染色体揭示了 antisense 抄本的一个出人意料地大的比例。这些 antisense 基因似乎由与感觉基因交往调整基因表示。以前的研究集中了于非编码的 antisense 基因,但是 antisense 蛋白质的可能的规章的角色糟糕被理解。在这研究,我们发现那基因 ADF1 作为抄写 suppressor 扮演的 antisense 编码的蛋白质,调整在 Saccharomyces cerevisiae 的感觉基因 MDF1 的表示。基于进化,基因, cytological 和生物化学的证据,我们证明编码蛋白质的感觉基因 MDF1 很可能发源从一个以前非编码的序列和罐头的 de novo 显著地在由有约束力的地席伪 2 并且这样中等的富人压制面包师的酵母的交配效率支持植物的生长。这些结果在几个重要问题上打开新灯,包括新 sense-antisense 相互作用机制,功能的基因的 de novo 起源,和交配小径的酵母的规定。 Recent transcription profiling studies have revealed an unexpectedly large proportion of antisense transcripts in eukaryotic genomes. These antisense genes seem to regulate gene expression by interacting with sense genes. Previ- ous studies have focused on the non-coding antisense genes, but the possible regulatory role of the antisense protein is poorly understood. In this study, we found that a protein encoded by the antisense gene ADF1 acts as a transcription suppressor, regulating the expression of sense gene MDF1 in Saccharomyces cerevisiae. Based on the evolutionary, ge- netic, cytological and biochemical evidence, we show that the protein-coding sense gene MDF1 most likely originated de novo from a previously non-coding sequence and can significantly suppress the mating efficiency of baker's yeast in rich medium by binding MATa2 and thus promote vegetative growth. These results shed new light on several im- portant issues, including a new sense-antisense interaction mechanism, the de novo origination of a functional gene, and the regulation of yeast mating pathway.
出处 《Cell Research》 SCIE CAS CSCD 2010年第4期408-420,共13页 细胞研究(英文版)
关键词 蛋白质编码 反义基因 芽殖酵母 基因抑制 交配 起源 链编码 非编码序列 de novo, sense-antisense interaction, mating pathway, Saccharomyces cerevisiae
  • 相关文献

参考文献33

  • 1Johnson JM, Edwards S, Shoemaker D, Schadt EE. Dark matter in the genome: evidence of widespread transcription detected by microarray tiling experiments. Trends Genet 2005; 21:93-102.
  • 2Almeida R, Allshire RC. RNA silencing and genome regulation. Trends Cell Biol 2005; 15:251-258.
  • 3Aravind L, Watanabe H, Lipman D J, Koonin EV. Lineagespecific loss and divergence of functionally linked genes in eukaryotes. Proc Natl Acad Sci USA 2000; 97:11319-11324.
  • 4Shearwin KE, Callen BP, Egan JB. Transcriptional interference-a crash course. Trends Genet 2005; 21:339-345.
  • 5Camblong J, Iglesias N, Fickentscher C, Dieppois G, Stutz F. Antisense RNA stabilization induces transcriptional gene silencing via histone deacetylation in S. cerevisiae. Cell 2007; 131:706-717.
  • 6Page N, Gerard-Vincent M, Menard P, et al. A Saccharomyces cerevisiae genome-wide mutant screen for altered sensitivity to K1 killer toxin. Genetics 2003; 163:875-894.
  • 7Long M, Betran E, Thornton K, Wang W. The origin of new genes: glimpses from the young and old. Nat Rev Genet 2003; 4:865-875.
  • 8Ohno S. Evolution by Gene Duplication. New York: SpringerVerlag, 1970.
  • 9Jacob F. Evolution and tinkering. Science 1977; 196:1161- 1166.
  • 10Begun D J, Lindfors HA, Kern AD, Jones CD. Evidence for de novo evolution of testis-expressed genes in the Drosophila yakuba/Drosophila erecta clade. Genetics 2007; 176:1131- 1137.

同被引文献13

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部