期刊文献+

基于中枢神经模式的四足机器人步态控制 被引量:10

Quadruped Robot Gait Control Based on Central Pattern Generator
下载PDF
导出
摘要 为实现四足机器人稳定的节律性行走,研究基于中枢神经模式发生器(Central pattern generator,CPG)的比例步态控制方式。构建互抑神经元组成的振荡器模型,并基于振荡器模型组建四足机器人髋关节CPG网络。通过仿真研究得到模型各参数与CPG网络输出特性之间的关系,确定一套整定后CPG网络的模型参数,提出四足机器人比例步态,通过CPG模型阈值的调整可实现不同占空比的步态。对基于CPG网络的步态反射特性进行分析。试验表明,该方法可实现稳定的四足机器人行走,且具备一定的障碍物反射能力,具有较好的环境适应性。 To realize the stable and rhythmic walking of quadruped robot, proportion gait control strategy based on central pattern generator (CPG) is explored. The oscillator is modeled by two mutually inhibited neurons. Furthermore, quadruped hip joint CPG network is constructed on the basis of this kind of oscillator model. According to the simulated relation between oscillator parameters and output of the CPG network, a group of parameters of CPG network are determined and a proportion gait is proposed. Gait with different duty factor can be realized by threshold adjustment. The reflex characteristic of gait based CPG network is analyzed. Experiments show that the stable walking can be achieved through this control method based on CPG with good obstacle reflex performance and environmental adaptation.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2010年第7期1-6,共6页 Journal of Mechanical Engineering
基金 国家高技术研究发展计划(863计划 2004AA420110) 黑龙江省科技攻关(GB04A502)资助项目
关键词 中枢模式发生器 四足 机器人 步态 Central pattern generator Quadruped Robot Gait
  • 相关文献

参考文献11

  • 1张秀丽,郑浩峻,段广洪.动物运动控制机理及对机器人控制的启示[J].机器人技术与应用,2002(5):24-26. 被引量:9
  • 2DELCOMYN F. Neural basis of rhythmic behavior in animals[J]. Science, 1980, 210(4469): 492-498.
  • 3KIMURA H. Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts[J]. The International Journal of Robotics Research, 2007, 26(5): 475-490.
  • 4SHINKICHI I, HIDEO Y, TAMIO A. CPG model for autonomous decentralized multi-legged robot system generation and transition of oscillation patterns and dynamics of oscillators[J]. Robotics and Autonomous Systems, 2003, 44(3): 171-179.
  • 5LEWIS M A, TENORE F, ETIENNE C R. CPG design using inhibitory networks[C]//IEEE International Conference on Robotics and Automation, April 18-22, 2005, Barcelona, Spain. United States: IEEE, 2005: 3 682-3 687.
  • 6卢振利,马书根,李斌,王越超.基于循环抑制CPG模型的蛇形机器人控制器[J].机械工程学报,2006,42(5):137-143. 被引量:10
  • 7MATSUOKA K. Mechanisms of frequency and pattern control in the neural rhythm generators[J]. Biological Cybernetics, 1987, 56(2): 345-353.
  • 8VENKATARAMAN S T. A simple legged locomotion gait model[J]. Robotics and Autonomous Systems, 1997, 22(1): 75-85.
  • 9KIMURA H, FUKUOKA Y. Biologically inspired adaptive dynamic walking in outdoor environment using a self-contained quadruped robot tekken[C]/flntema- tional Conference on Intelligent Robots and Systems, September 28-October 2, 2004, Sendai, Japan. Monographie.. IEEE, 2004: 986-992.
  • 10SHINKICHI I, HIDEO Y, TAMIO A. CPG model for autonomous decentralized multi-legged robot system--generation and transition of oscillation patterns and dynamics of oscillators[J]. Robotics and Autonomous Systems, 2003, 44(3): 171-179.

二级参考文献37

  • 1[1]Koyachi N,Adachi H,Arai T. Limb mechanism for integration of leg and arm-kinematic analysis of leg mechanism transformable into arm. J. of Robotics Society of Japan,1996,14(7):968~976
  • 2[2]Lee W J,Orin D E. The kinematics of motion planning for multilegged vehicles over uneven terrain. IEEE J. of Robotics and Automation, 1988, 4(2):204~212
  • 3[3]Lee J,Song S. Path planning control of walking machines in an obstacle-strewn environment. J. of Robotic Systems, 1991, 8(6):801~827
  • 4[4]Tsai C R,Lee T T. A study of fuzzy-neural force control for a quadrupedal walking machine. Trans. on ASME, J. of Dynamic Systems, Measurement, and Control, 1998, 120(1):124~133
  • 5[5]Innocenti C. Direct kinematics in analytical form of the 6-4 fully-parallel mechanism. Trans. of ASME, J. of Mechanical Design, 1995, 117(1):89~95
  • 6[6]Nanua P,Waldron K J,Murthy V. Direct kinematic solution of a stewart platform. IEEE Trans. on Robotics and Automation, 1990, 6(4):438~443
  • 7[7]Chen X D, Watanabe K,Izumi K. Joint positions and robot stability of the omnidirectional crawling quadruped robot. J. of Robotics and Mechatronics, 1999, 11(6):510~517
  • 8[8]Chen X D. A systematic study on crawl locomotion control for a quadruped robot:[PhD Dissertation]. Saga:Saga University, 2001
  • 9BAUCHOT R.Snakes-a nature history[M].New York:Sterling Publishing Company,Inc.,1994:60-75.
  • 10DELCOMYN F.Neural basis of rhythmic behavior in animal[J].Science,1980,210 (4 469):492-498.

共引文献49

同被引文献81

引证文献10

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部