期刊文献+

基于多尺度线调频基稀疏信号分解的轴承故障诊断 被引量:27

Sparse Signal Decomposition Method Based on Multi-scale Chirplet and Its Application to Bearing Fault Diagnosis
下载PDF
导出
摘要 在线调频小波路径追踪算法和稀疏信号分解的基础上,提出一种基于多尺度线调频基的稀疏信号分解方法,并将其应用于非平稳转速下的轴承故障诊断。基于多尺度线调频基的稀疏信号分解方法,根据信号的特点,自适应地选择多尺度的线调频基函数对信号进行投影分解。由于基函数库多尺度特性,使得该方法比以往采用单一尺度库函数的稀疏信号分解方法更适用于分解频率呈曲线变化的非平稳信号。在非恒定转速下,当轴承出现故障时,振动信号中与故障对应的特征频率将会随转速变化而波动,采用基于多尺度线调频基的稀疏信号分解方法能准确获得非平稳转速下轴承故障特征频率随时间的变化情况,进而对其状态和故障特征进行识别,仿真算例和应用实例说明了此方法的有效性。 Based on the chirplet path tracing algorithm and sparse signal decomposition, a new sparse signal decomposition method based on multi-scale chirplet is proposed and applied to the decomposition of bearing failure vibration signals under non-stationary speed. The proposed method projects the signals onto the multi-scale chirplet base functions, and chooses the base functions adaptively according to the signal characteristics. Because of the multi-scale features of the base functions, this method is superior to the old sparse signal decomposition method, which adopts a single scale, and is more applicable to the decomposition of non-stationary signals whose frequency has a curve change. When the bearing has a failure, the relevant characteristic frequency in the vibration signal will fluctuate with the change of speed. The proposed method is very suitable to obtain the bearing failure characteristic frequency which fluctuates with the time, so it can be used to identify the falures of bearings. Simulation and a practical application example proves the effectiveness of the method.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2010年第7期88-95,共8页 Journal of Mechanical Engineering
基金 国家自然科学基金(50875078) 国家高技术研究发展计划(863计划 2009AA04Z414) 教育部长江学者与创新团队发展计划(5311050050037)资助项目
关键词 多尺度 稀疏分解 线调频小波 基函数 非平稳信号 轴承故障诊断 Multi-scale Sparse decomposition Chirplet Base function Non-stationary signal Bearing fault diagnosis
  • 相关文献

参考文献12

  • 1林京,屈梁生.基于连续小波变换的信号检测技术与故障诊断[J].机械工程学报,2000,36(12):95-100. 被引量:71
  • 2BOZCHALOOI I S, LIANG Ming. A joint resonance frequency estimation and in-band noise reduction method for enhancing the detect ability of bearing fault signals[J]. Mechanical Systems and Signal Processing, 2008, 22(4): 915-933.
  • 3BOZCHALOOI I S, LIANG Ming. A smoothness index-guided approach to wavelet parameter selection in signal de-noising and fault detection[J]. Mechanical Systems and Signal Processing, 2007, 308(1-2): 246-267.
  • 4SHEEN Yuhtay. An analysis method for the vibration signal with amplitude modulation in a bearing system[J]. Journal of Sound and Vibration, 2007, 303(3-5): 538-552.
  • 5SHEEN Yuhtay. An envelope detection method based on the first-vibration-mode of bearing vibration[J]. Measurement, 2008, 41(7): 797-809.
  • 6WANG Jing, XU Guanghua, ZHANG Qing, et al. Application of improved morphological filter to the extraction of impulsive attenuation signals[J]. Mechanical Systems and Simlal Processing, 2009, 23(1~: 236-245_.
  • 7王太勇,何慧龙,王国锋,冷永刚,胥永刚,李强.基于经验模式分解和最小二乘支持矢量机的滚动轴承故障诊断[J].机械工程学报,2007,43(4):88-92. 被引量:33
  • 8LI Zhen, HE Zhengjia, ZI Yanyang, et al. Customized wavelet denoising using intra- and inter-scale dependency for bearing fault detection[J]. Journal of Sound and Vibration, 2008, 313(1-2): 342-359.
  • 9LI Zhen, HE Zhengjia, ZI Yanyang, et al. Rotating machinery fault diagnosis using signal-adapted lifting scheme[J]. Mechanical Systems and Signal Processing, 2008, 22(3): 542-556.
  • 10MALLAT S G, ZHANG Zhifeng. Matching pursuit with time-frequency dictionaries[J]. Signal Processing, 1993, 41(12): 3 397-3 415.

二级参考文献14

  • 1(美)崔锦泰 程正兴(译).小波分析导论[M].西安:西安交通大学出版社,1995..
  • 2Guo H,IEEE Trans Signal Procesing Letters,1996年,3卷,1期,10页
  • 3程正兴(译),小波分析导论,1995年
  • 4Liang J,Proc.Int. Conf. Image Processing,1994年,66页
  • 5SIMONH.神经网络原理[M].北京:机械工业出版社,2004.183-185.
  • 6VAPNIK V N. The nature of statistical learning theory[M].New York: Springer-Verlag, 1995.
  • 7ANTONELLI G, CACCAVALE F, SANSONE C, et al.Fault dignosis for AUVs using support vector machines[C]// Proceedings of 2004 IEEE International Conference on Robotics and Automation, 2004, 5:4 486-4 491.
  • 8HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the hilbert spectrum for nonlinearand non-stationary time series analysis[C]//Proc. R. Soc.Lond., 1998, 454: 903-995.
  • 9KAROL, ZYCZKOWSKI. Renyi entrapolafion and Shannon entropy[J]. System and Information, 2003, 10:297-310.
  • 10BARANIUM R G, FLANDRIN P, JANSSEN A J E M, et al. Measuring time-frequency information content using Renyi entropies[J]. IEEE Transactions on Information Theory, 2001,47(4): 1 391-1 409.

共引文献101

同被引文献272

引证文献27

二级引证文献226

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部