期刊文献+

基于盲信号分离的波达方向估计 被引量:1

DOA Estimation Method Based on Blind Signal Separation
下载PDF
导出
摘要 为了将盲信号分离应用于波达方向估计,在基于四阶累积量的定点迭代快速独立分量分析(Independent Component Analysis,ICA)算法进行盲信号分离的基础上,利用分离矩阵得出混合矩阵的估计,并对混合矩阵的列向量在真实阵列流型上进行投影,通过角度扫描估计出信号的方位角。仿真结果表明,该算法在信噪比较高的条件下,具有跟MUSIC(Multiple Signal Classification Method)算法相似的分辨性能,但是在信噪比较低的情况下表现出较高的分辨率。 To apply the blind signal separation method to DOA estimation, the blind signal separation (BSS) algorithm based on fast fixed - point independent component analysis is introduced in this paper. By using this algorithm, the estimation of manifold matrix is deduced from the gained separated matrix. We obtain the DOA (direction - of - arrival) of signals from angle scaling based on the projection of the column vector on the real array configuration. The results of the experiment show that this algorithm has good resolution in a low SNR ( Signal Noise Ratio) environment compared with the MUSIC (Multiple Signal Classification) algorithm.
出处 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2010年第2期47-51,共5页 Journal of Air Force Engineering University(Natural Science Edition)
基金 国家自然科学基金资助项目(60272086)
关键词 盲信号分离 ICA 波达方向估计 MUSIC BSS ICA DOA estimation MUSIC
  • 相关文献

参考文献9

  • 1Ferreol A,Tournier C.DOA Estimation After Bcind Idcntificatim of Sabspace Channd Vectors in Multipath Amtexts[C]//Proceeding of IEEE ICASSP′02.[S.l.]:IEEE Press,2002:101-105.
  • 2Feng Ming,Kammeyer K D.Blind Direction of Arrival Estimation Using Antenna Arrays in Multipath Communication Environment[C]//Proceedind of IEEE Global Telecommunications Conference[S.l.]:IEEE Press,1998:165-170.
  • 3游荣义,陈忠.一种基于ICA的盲信号分离快速算法[J].电子学报,2004,32(4):669-672. 被引量:21
  • 4Hyvarinen A,Qja E.Independent Component Aanalysis:Algorithms and Application[J].Neural Networks,2000,13(4/5):411-430.
  • 5Bingham E,Hyvarinen A.A Fast-point Algorithm for Independent Component Analysis of Complex-valued Signals[J].Int Journal of Neural Systems,2000,10(1):1-8.
  • 6Karhunen J.Neural Approaches to Independent Component Analysis and Source Separation[C]//In ESANN'96 European Symposium on Article Neural Networks Bruges.Belgium:IEEE Press,1996:249-266.
  • 7Delfoer N,Loubaton P.Adaptive Blind Separation of Independent Sources:A Deflation Approach[J].Signal Processing,1995,45(1):59-83.
  • 8Bell A J,Sejnowski T J.An Information-maximization Approach to Blind Separation and Blind Deconvolution[J].Neural Compulation,1995,7(6):1129-1159.
  • 9李立峰,张建立.基于盲信号分离的高分辨测向算法研究[J].电子对抗,2006(1):1-5. 被引量:4

二级参考文献9

  • 1C Jutten,J Herault.Blind separation of sources,part I:An adaptive algorithm based on neuromimetic architecture [J].Signal Processing,1991,24(1):1-10.
  • 2P Comon.Independent component analysis-a new concept ?[J].Signal processing,1994,36(3):287-314.
  • 3J Karhunen,E Oja,L Wang,R Vigario,J Joutsensalo.A class of neural networks for independent component analysis [J].IEEE Trans.on Neural Networks,1997,8(3):486-504.
  • 4A Hyvarinen,E Oja.Simple neuron models for independent component analysis [J].Int.Journal of Neural Systems,1996,7(6):671-687.
  • 5J Karkunen,L Wang,R Vigario.Nonlinear PCA type approaches for source separation and independent component analysis [C].Proceedings of the 95 IEEE International Conference on Neural Networks,IC-NN '95,Perth,Australia,1995.995-1000.
  • 6J Karhunen.Neural approaches to independent component analysis and source separation [C].In ESANN'96,European Symposium on Articial Neural Networks,Bruges,Belgium,1996.249-266.
  • 7A J Bell,T J Sejnowski.An information-maximization approach to blind separation and blind deconvolution [J].Neural Computation,1995,7(6):1129-1159.
  • 8A Hyvarinen.A family of fixed-point algorithms for independent component analysis [A].In Proc.IEEE Int.Conf.on Acoustics,Speech and Signal Processing (ICASSP'97) [C],Munich,Germany,IEEE,1997.3917-3920.
  • 9N Delfosse,P Loubaton.Adaptive blind separation of independent sources:a deflation approach [J].Signal Processing,1995,45(1):59-83.

共引文献23

同被引文献2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部