期刊文献+

基于RBF神经网络的混合输入机构自适应控制 被引量:4

Adaptive Control of Hybrid Machine Based on RBF Neural Network
下载PDF
导出
摘要 提出一种伺服电动机对常速电动机运动进行闭环跟踪的控制策略,控制伺服电动机的运动,以实现对常速电动机速度波动的补偿。由于系统精确模型难以获得,设计了基于名义模型的径向基函数网络自适应控制器,进行混合输入机构轨迹的跟踪,应用径向基函数(RBF)神经网络对系统中摩擦、外部扰动和动力耦合等不确定因素的和进行逼近,网络输出权值由自适应算法学习确定,并对该控制器进行稳定性分析。仿真结果表明,所设计的控制器稳定有效,具有较强的鲁棒性。 The precision of trajectory tracking of hybrid machine was debased because of velocity fluctuation in constant velocity motor and uncertainties in the system.The strategy for control servo motor grounded on tracking the motion was proposed,to compensate the velocity fluctuation of constant velocity motor. Considering the uncertainties of the system,an adaptive sliding mode controller based on RBF neural network was designed for trajectory tracking of hybrid machine.The sum of uncertainties of the system was compensated by control gain with RBF neural network,and the output weight of in network was adjusted by adaptive algorithm.The simulation result indicated the robustness and effectiveness of the controller.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2010年第4期204-208,共5页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家自然科学基金资助项目(50575180)
关键词 混合输入机构 径向基函数神经网络 自适应控制 轨迹跟踪 Hybrid machine RBF neural network Adaptive control Trajectory control
  • 相关文献

参考文献7

  • 1邹惠君,高峰.现代机构学进展:第1卷[M].北京:高等教育出版社,2007.
  • 2Ouyang P R,Li Q,Zhang W J,et al.Design,modeling and control of a hybrid machine[J].Mechatronics,2004,14(10):1197-1217.
  • 3Yiannis Karayiannidis,George Rovithakis,Zoe Doulgeri.Force/position tracking for a robotic manipulator in compliant contact with a surface using neuroadaptive control[J].Automatica,2007,43(7):1281-1288.
  • 4李仁军,刘宏昭,李鹏飞.考虑关节耗散的平面两自由度五杆机构动力学建模[J].农业机械学报,2008,39(12):157-161. 被引量:8
  • 5Wang L X.A cource in fuzzy systens and control[M].Englewood Cliffs,NJ:Prentice-Hall,1997.
  • 6Moody J,Darken C.Fast learning in networks of locally-tune processing units[J].Neural Computation,1989(1):281-294.
  • 7李仁军,刘宏昭,李鹏飞.混合输入机构实现给定轨迹的模糊控制[J].农业机械学报,2009,40(3):199-202. 被引量:4

二级参考文献12

  • 1罗磊,莫锦秋,王石刚,蔡建国.并联机构动力学建模和控制方法分析[J].上海交通大学学报,2005,39(1):75-78. 被引量:24
  • 2于红英,唐德威,王建宇.平面五杆机构运动学和动力学特性分析[J].哈尔滨工业大学学报,2007,39(6):940-943. 被引量:38
  • 3Ouyang P R, Li Q, Zhang W J, et al. Design, modeling and control of a hybrid machine[J]. Mechatronics, 2004, 14(10) : 1 197-1 217.
  • 4Yu Hongnian. Modeling and control of hybrid systems- a five bar mechanism case[J]. Internal Journal of Automation and Computing, 2006, 3(3) : 235 -243.
  • 5Craig J. Introduction to robotics[M]. New York: Addison-Wesley Publishing Company, 1986.
  • 6Armstrong-Helouvry B, Pierre Dupont, Canudas De Wit C. A survey of models, analysis tools and compensation methods for the control of machine with friction[J]. Automatica, 1994, 30(7): 1 083-1 138.
  • 7邹惠君,高峰.现代机构学进展:第1卷[M].北京:高等教育出版社,2007.
  • 8Yu Hongnian. Modeling and control of hybrid systems a five bar mechanism case[J]. Internal Journal of Automation and Computing, 2006, 3(3) :235 -243.
  • 9Ouyang P R, Li Q, Zhang W J, et al. Design, modeling and control of a hybrid machine[J]. Mechatronics, 2004, 14(10) : 1 197-1 217.
  • 10Ghorbel F. Modeling and PD control of a closed-chain mechanical system[C] // Proceedings of the 34th Conference on Decision and Control, New Orleans, LA, USA: 540- 542, 1995.

共引文献9

同被引文献46

引证文献4

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部