Lagrange系统中无界轨道的变分构造 谨以此文致杨乐院士七十华诞
摘要
我们将证明T2上通有的测地流在通有的周期势能的扰动下无界轨道的存在性.和前期已有的工作不同,这里所得到的轨道不需要充分大的初始值.
出处
《中国科学:数学》
CSCD
北大核心
2010年第4期311-318,共8页
Scientia Sinica:Mathematica
基金
国家重点基础研究发展计划(973计划)(批准号:2007CB814800)
国家自然科学基金(批准号:10531050)
江苏省基础研究(批准号:BK2008013)资助项目
参考文献12
-
1Mather J N. Variational construction of trajectories for time periodic Lagrangian systems on the two torus. Manuscript, 1997.
-
2Bolotin S, Treschev D. Unbounded growth of energy in nonautonomous Hamiltonian systems. Nonlinearity, 1999, 12: 365-388.
-
3Delshama A, de la Llave R, Seara T M. A geometric approach to the existence of orbits with unbounded energy in generic periodic perturbations by a potential of generic geodesic flows of T^2. Comm Math Phys, 2000, 209:353-392.
-
4Delshama A, de la Llave R, Seara T M. Orbits of unbounded energy in quasi-periodic perturbations of geodesic flows. Adv Math, 2006, 202:64-188.
-
5Arnol'd V I. Instability of dynamical systems with several degrees of freedom. Sov Math Dokl, 1964, 5:581-585.
-
6Cheng C-Q, Yan J. Existence of diffusion orbits in a priori unstable Hamiltonian systems. J Differ Geom, 2004, 67: 457-517.
-
7Cheng C-Q, Yan J. Arnold diffusion in Hamiltonian systems: a priori unstable case. J Differ Geom, 2009, 82:229-277.
-
8Delshams A, de la Llave R, Seara T M. Geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: heuristic and rigorous verification of a model. Mem Amer Math Soc, 2006, 179:1-141.
-
9Treschev D V. Evolution of slow variables in a priori unstable Hamiltonian systems. Nonlinearity, 2004, 17:1803-1841.
-
10Hirsch M W, Pugh C C, Shub M. Invariant Manifolds. In: Lect Notes Math, vol. 583. Berlin: Springer-Verlag, 1977.
-
1王在洪.共振情形下具有不对称非线性项Liénard方程无界解和周期解的共存性[J].中国科学(A辑),2007,37(5):605-616.
-
2朱大训.关于对称正定系统共轭梯度法剩余单调性的讨论[J].复旦学报(自然科学版),1996,35(4):402-406.
-
3程燕燕,杨晓松.切换单摆无界轨道的存在性[J].动力学与控制学报,2010,8(4):365-368.
-
4徐望枢,丘季龙.关于简谐振动定义的讨论[J].黄淮学刊(自然科学版),1992,8(1):77-80. 被引量:2
-
5郭志勇.计算n阶固有频率的一个简便公式[J].西安科技学院学报,2003,23(3):354-356. 被引量:3
-
6肖业胜.一个力学模型的矩阵及其特性[J].武汉工程职业技术学院学报,2014,26(1):43-47.
-
7张建松,张月芝,朱江,羊丹平.对流占优扩散方程的分裂特征混合有限元方法[J].高校应用数学学报(A辑),2016,31(3):338-350.
-
8孙丽英.对称不定系统的一类预处理子的注记[J].数学的实践与认识,2014,44(23):242-246.
-
9黄自萍,徐建平,周健.带罚混合问题在Taylor—Hood元逼近下的快速迭代法[J].同济大学学报(自然科学版),1996,24(2):168-173.
-
10ZHENGZhi-Gang.Directed Transport of Interacting Particle Systems: Recent Progress[J].Communications in Theoretical Physics,2005,43(1):107-112. 被引量:1