期刊文献+

Lagrange系统中无界轨道的变分构造 谨以此文致杨乐院士七十华诞

原文传递
导出
摘要 我们将证明T2上通有的测地流在通有的周期势能的扰动下无界轨道的存在性.和前期已有的工作不同,这里所得到的轨道不需要充分大的初始值.
作者 程崇庆 李霞
出处 《中国科学:数学》 CSCD 北大核心 2010年第4期311-318,共8页 Scientia Sinica:Mathematica
基金 国家重点基础研究发展计划(973计划)(批准号:2007CB814800) 国家自然科学基金(批准号:10531050) 江苏省基础研究(批准号:BK2008013)资助项目
  • 相关文献

参考文献12

  • 1Mather J N. Variational construction of trajectories for time periodic Lagrangian systems on the two torus. Manuscript, 1997.
  • 2Bolotin S, Treschev D. Unbounded growth of energy in nonautonomous Hamiltonian systems. Nonlinearity, 1999, 12: 365-388.
  • 3Delshama A, de la Llave R, Seara T M. A geometric approach to the existence of orbits with unbounded energy in generic periodic perturbations by a potential of generic geodesic flows of T^2. Comm Math Phys, 2000, 209:353-392.
  • 4Delshama A, de la Llave R, Seara T M. Orbits of unbounded energy in quasi-periodic perturbations of geodesic flows. Adv Math, 2006, 202:64-188.
  • 5Arnol'd V I. Instability of dynamical systems with several degrees of freedom. Sov Math Dokl, 1964, 5:581-585.
  • 6Cheng C-Q, Yan J. Existence of diffusion orbits in a priori unstable Hamiltonian systems. J Differ Geom, 2004, 67: 457-517.
  • 7Cheng C-Q, Yan J. Arnold diffusion in Hamiltonian systems: a priori unstable case. J Differ Geom, 2009, 82:229-277.
  • 8Delshams A, de la Llave R, Seara T M. Geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: heuristic and rigorous verification of a model. Mem Amer Math Soc, 2006, 179:1-141.
  • 9Treschev D V. Evolution of slow variables in a priori unstable Hamiltonian systems. Nonlinearity, 2004, 17:1803-1841.
  • 10Hirsch M W, Pugh C C, Shub M. Invariant Manifolds. In: Lect Notes Math, vol. 583. Berlin: Springer-Verlag, 1977.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部