摘要
重新考察一类切换线性系统的能控性,这类系统具有不同的系统矩阵和相同的输入矩阵.研究发现文献导出的必要充分条件为假命题,该判据只适用于2阶系统,对于3阶及以上系统其必要性不一定成立.并证明第一不变子空间只是能控状态集的真子集,而非其全体.最后通过1个反例对结论予以验证.
The paper presents a reexamination of the controllability of a class of switched linear systems with different systematic matrices but the same input matrix. Investigations reveal that the necessary and sufficient condition derived in the former literatures is a false proposition, which only holds for the second-order systems, while the necessity is not always true for systems of the third or a higher order. The first invariant subspace proves to be a proper subset of controllable state set rather than the whole of it. Finally, a counterexample is presented to illustrate the conclusion.
出处
《同济大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2010年第4期586-588,共3页
Journal of Tongji University:Natural Science
基金
国家"八六三"高技术研究发展计划资助项目(2006AA05Z211)
关键词
切换线性系统
输入矩阵定常
能控性
能控状态集
必要充分条件
switched linear system
constant input matrix
controllability
controllable state set
necessary and sufficientcondition