期刊文献+

B值随机元的Rosenthal不等式及其应用

Rosenthal's Inequality and Its Applications for B-valued Random Elements
下载PDF
导出
摘要 该文证明了一类B值随机元序列的Rosenthal不等式,一些经典的Rosenthal不等式作为其推论被蕴含其中.作为不等式的应用,还给出了行为鞅差随机元的阵列的完全收敛性的一些结果,推广和改进了一些熟知的结论. In this paper the author proves Rosenthal's inequality for B-valued random element sequences,which contains classical Rosenthal's inequalities as its corollaries.As an application, some results on the complete convergence for arrays of rowwise martingale difference random elements are obtained.Some well-known results are improved and extended.
作者 甘师信
出处 《数学物理学报(A辑)》 CSCD 北大核心 2010年第2期327-334,共8页 Acta Mathematica Scientia
基金 国家自然科学基金(10671149)资助
关键词 (q p)-W-A序列 随机元 强大数定律 完全收敛性 p可光滑空间 p型Banach空间 (q p)-W-A sequence Random elements Strong law of large numbers Complete convergence p-smoothable Banach spaces Banach spaces of type p
  • 相关文献

参考文献15

  • 1Day M M. Uniform convexity infactor and cojugate spaces. Ann Math, 1944, 45:375-385.
  • 2Woyczynski W A. Geometry and martingales in Banach spaces. Lecture Notes in Math, 1975, 472: 229- 275.
  • 3Gan Shixin. Moment inequalities for B-valued random vectors with applications to the strong limit theorems. Statist Probab Letters, 2004, 67:111-119.
  • 4Pisier G. Martingales with values in uniformly convex spaces. Israel Journal of Mathematics, 1975, 20: 326-350.
  • 5AssouoA P. Espace p-lisses at q-convexes, Integalities de Burkholder. Seminaire Maurey-Schwartz, Exp XV. Paris: Ecole Polytech, 1975.
  • 6Woyczynski W A. On Marcinkiewicz-Zygmund laws of large numbers in Banach spaces and related rates of convergence. Probab Math Statist, 1980, 1:117-131.
  • 7Bryc W, Smolenski W. Moment conditions for almost sure convergence of weakly correlated random variables. Proc Amer Math Soc, 1993, 119(2): 629-635.
  • 8Rosenthal H P. On the subspace of LP(p > 2) spanned by sequence of independent random variables. Israel J Math, 1970, 8:273-303.
  • 9Rosenthal H P. On the span in Lp of sequences of independent random variables. Sixth Berkeley Symp Math Statist Probability 2. Berkeley and Los Angeles: Uni California Press, 1972:149-167.
  • 10Petrov V V. Limit Theorems for Sums of Independent Random Variables. Moscow: Nauka (in Russian), 1987.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部