期刊文献+

诺依曼边条件下正弦戈登方程组的动力学

The Dynamics of Sine-Gordon System with Neumann Boundary Condition
下载PDF
导出
摘要 利用等价模和锥压缩的方法证明了当阻尼常数和扩散常数适当大时,Neumann边条件下周期受迫的Sine-Gordon方程组的全局吸引子是一条不变曲线,系统在不变曲线上的行为类似于圆周上的保向同胚. By the methods of equivalent norms and cone squeezing the author proves that the attractor of the periodic forcing coupled Sine-Gordon system with Neumann boundary condition is an invariant curve when both the damping constant and diffusion constant are sufficiently large.The behavior of the system on the curve is like the orientation preserving homeomorphism on a circle.
作者 刘迎东
出处 《数学物理学报(A辑)》 CSCD 北大核心 2010年第2期364-374,共11页 Acta Mathematica Scientia
基金 国家自然科学基金(10671131)资助
关键词 吸引子 周期解 稳定性 Attractor Periodic solution Stability
  • 相关文献

参考文献5

  • 1Temam R. Infinite-dimensional Dynamical Systems in Mechanics and Physics. New York: Springer-Verlag, 1997:188-202.
  • 2Qian Min, Shen Wenxian, Zhang Jinyan. Global behavior in the dynamical equation of J-J type. J Differential Equations, 1988, 77: 315-333.
  • 3Qian Min, Shen Wenxian, Zhang Jinyan. Dynamical behavior in coupled systems of J-J type. J Differential Equations, 1990, 88:175-212.
  • 4Liu Yingdong, Li Zhengyuan. The principal eigenvalue of periodical reaction-diffusion systems with time delay. Beijing Mathematics, 1997, 3(1): 143-149.
  • 5Pazy A. Semigroup of Linear Operators and Applications to Partial Differential Equations. New York: Springer-Verlag, 1983:219-223.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部