摘要
该文利用Mawhin重合度延拓定理研究了一类二阶泛函微分方程x″(t)+f(t,x(t),x(t-τ(t)))[x′(t)]~n+a(t)x^2(t)+b(t)x(t)=p(t)(n≥2)的多个周期解的问题,得到了这类方程至少存在两个周期解的结果.
By applying the continuation theorem of coincidence degree theory developed by Mawhin,the authors study the existence of several periodic solutions to the second order functional differential equation. x″(t)+f(t,x(t),x(t-τ(t)))[x′(t)]^n+a(t)x^2(t)+b(t)x(t)=p(t)(n≥2). Some new results for the existence of at least two periodic solutions to such equation are obtained.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2010年第2期525-530,共6页
Acta Mathematica Scientia
基金
湖北工业大学科技项目(2006(5))资助
关键词
泛函微分方程
多个周期解
重合度
Functional differential equations
Sevarel periodic solutions
Coincidence degree