期刊文献+

基于GPRS的电动汽车道路行驶工况自学习 被引量:17

GPRS Based Driving Cycle Self-Learning for Electric Vehicle
下载PDF
导出
摘要 提出了一种基于GPRS的道路行驶工况数据的远程采集方法,并将其应用在电动汽车的实际运行中,获得电动汽车道路试验原始数据库.同时将自组织映射(SOM)神经网络引入到行驶工况的自学习中,通过SOM网络对原始数据进行运动学片段的聚类分析,构建出了电动汽车在实际运行中的3种典型工况,为电动汽车基于行驶工况的自适应优化控制策略提供了基础环节.所构建的行驶工况和其他行驶工况相比具有一般规律,表明应用SOM网络能够很好地实现道路行驶工况的自学习功能. A methodology to collect the driving cycle data remotely based on GPRS was presented and applied to a running electric vehicle to build a driving cycle database for road test. The self-organizing map (SOM) network was introduced into self-learning of driving cycle, so the cluster analysis was performed to classify kinematic sequence of original data. Based on the classification of kinematic sequence ,three types of typical driving cycles of electric vehicle road test were constructed and provided foundation for self-adapt optimal control strategy for electric vehicle. Compared with other driving cycles,the constructed driving cycles have common regularity,which shows that self-learning of driving cycle is perfectly realized by the application of SOM network.
出处 《天津大学学报》 EI CAS CSCD 北大核心 2010年第4期283-286,共4页 Journal of Tianjin University(Science and Technology)
基金 国家高技术研究发展计划(863计划)资助项目(2006AA11A112)
关键词 电动汽车 行驶工况 自学习 自组织映射网络 GPRS electric vehicle driving cycle self-learning self-organizing map network GPRS
  • 相关文献

参考文献12

  • 1Dembski N, Guezennec Y, Soliman A. Analysis and experimental refinement of real-world driving cycles [C]//SAE Paper. Detroit, 2002, 2002-01-0069.
  • 2国家环境保护总局.GB18352.1-2001轻型汽车排气污染物排放限值及测量方法[S].2001.
  • 3杨延相,蔡晓林,杜青,刘昌文,刘杰.天津市道路汽车行驶工况的研究[J].汽车工程,2002,24(3):200-204. 被引量:61
  • 4de Haan P, Mario K. Real-World Driving Cycles for Emission Measurements: ARTEM IS and Swiss Cycles (E) [R]. Swiss Agency for Environment, Forests and Landscape (SAEFL), 2001.
  • 5Meyer M. TCP performance over GPRS [C]//IEEE Wireless Communications and Networking Conference. New Orleans, USA, 1999, 3: 1248-1252.
  • 6Tsao Shiao-Li. Scalable gateway GPRS support node for GPRS/UMTS networks[C]// Proceedings of 56th IEEE Vehicular Technology Conference. Vancouver, Canada, 2002, 4: 2239-2243.
  • 7Mishra A. Performance and architecture of SGSN and GGSN of general packet radio service(GPRS)[C]// IEEE Global Telecommunications Conference, GLOBE COM'01. US, 2001, 6:3494-3498.
  • 8Koikkalainen P. Tree structured self-organizing maps [G]// Oja E, Kaski S. Kohonen Maps. Amsterdam: Elsevier, 1999:121-130.
  • 9Kohonen T. Self-Organizing and Associative Memory [M]. Heidelberg: Springer, 1984.
  • 10张敏灵,陈兆乾,周志华.SOM算法、LVQ算法及其变体综述[J].计算机科学,2002,29(7):97-100. 被引量:14

二级参考文献22

  • 1杜红.汽车排放测试循环及道路排放特性的研究:[学位论文].天津:天津大学,2001,3..
  • 2圣聚.概率论与数理统计[M].北京:高等教育出版社,1996.400.
  • 3Bishop M. , Svenson M. , Williams K.I. Gtm: the generative topographic mapping. Neural Computation, 1998, 10(1): 215~234
  • 4Kaski S, Honkela T, Lagus K, Kohonen T. Websom-self-organizing maps of document collection. Neurocomputing, 1998, 21(1-3):101~117
  • 5Kohonen T. Self-organizing maps. 2nd edition. Berlin:Springer,1997
  • 6Kohonen T. Self-organizing and associative memory. Heidelberg:Springer, 1984
  • 7Fritzke B. Growing self-organizing networks-history, status quo,and perspectives. In:Oja E. , Kaski S. eds. Kohonen maps, Amsterdam: Elservier, 1999.131 ~ 144
  • 8Fritzke B. Growing cell structure- a self-organizing network for unsupervised and supervised learing. Neural Networks, 1994, 7(9): 1441~ 1460
  • 9Fritzke B. Let it grow-self-organizing feature maps with problem dependent structure. In :Kohonen T. , Makisara K. , Simula O.,Kangas J. eds. Artificial Neural Networks, Amsterdam: Elservier, 1991. 403~408
  • 10Friedman J H , Bentley J L , Finkel R. A. An algorithm for finding best matches in logrithmic time. ACM Trans. Math. ,1977,Software 3:209~216

共引文献93

同被引文献181

引证文献17

二级引证文献107

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部