期刊文献+

下降对称的Polak-Ribiere-Polyak共轭梯度法 被引量:1

Descent Symmetrical Polak-Ribiere-Polyak Conjugate Gradient Method
下载PDF
导出
摘要 应用Powell对称化技术于Polak-Ribiere-Polyak共轭梯度法,提出了一种下降对称的Polak-Ribiere-Polyak共轭梯度法.对任意线性搜索,它都满足下降性质.在强Wolfe线搜索的条件下,利用矩阵的谱分析和Zoutendijk条件,证明了此算法的全局收敛性.最后,通过数值实验并且与Polak-Ribiere+(PR+)算法作比较,验证了该算法的性能和有效性与实用性. Applying Powell symmetrical technique to the Polak-Ribiere-Polyak conjugate gradient method, a descent symmetrical Polak-Ribiere-Polyak conjugate gradient method was proposed, which satisfied the descent property for any line search. Under the strong Wolfe line search conditions, the global convergence of the new method was testified by the spectral analysis of matrix and Zoutendijk condition. Finally, compared with the Polak-Ribiere^+ (PR^+) algorithm, the performance and the availability of the new algorithm are verified by numerical experiments.
作者 刘东毅 邵琛
出处 《天津大学学报》 EI CAS CSCD 北大核心 2010年第4期367-372,共6页 Journal of Tianjin University(Science and Technology)
基金 国家自然科学基金资助项目(60874034) 国家自然科学基金青年科学基金资助项目(60704015)
关键词 共轭梯度法 全局最优化 算法 对称化技术 下降性质 线搜索 谱分析 全局收敛性 conjugate gradient method global optimization algorithm symmetrical technique descent property line search spectral analysis global convergence
  • 相关文献

参考文献20

  • 1Hestenes M R, Stiefel E. Methods of conjugate gradients for solving linear systems [J]. Journal of Research of the National Bureau of Standards, 1952, 49 (6) :409-439.
  • 2Fletcher R, Reeves C. Function minimization by conjugate gradients [J]. Computer Journal, 1964, 7(2): 149-154.
  • 3Polyak B T. The conjugate gradient method in extreme problems [J]. USSR Computation Math and Math Physics, 1969, 9(4): 94-112.
  • 4Dai Yuhong, Yuan Yaxiang. A nonlinear conjugate gradient method with a strong global convergence property [J]. SIAM Journal on Optimization, 1999, 10(1): 177-182.
  • 5Al-Baali M. Descent property and global convergence of the Fletcher-Reeves method with inexact line-search [J].IMA Journal of Numerical Analysis, 1985, 5(1): 121- 124.
  • 6Gilbert J C, Nocedal J. Global convergence properties of conjugate gradient methods for optimization [J]. SIAM Journal on Optimization, 1992, 2 (1) : 21-42.
  • 7Shanno D F. Conjugate gradient methods with inexact searches [J]. Mathematics of Operations Research, 1978, 3(3): 244-256.
  • 8Perry A. A modified conjugate gradient algorithm [J]. Operations Research Technical Notes, 1978, 26 (6) : 1073-1078.
  • 9Touati-Ahmed D, Storey C. Efficient hybrid conjugate gradient techniques [J]. Journal of Optimization Theory and Applications, 1990, 64(2): 379-397.
  • 10Liu Y, Storey C. Efficient generalized conjugate gradient algorithms [JJ. Journal of Optimization Theory and Applications, 1991, 69(1): 129-137.

同被引文献13

  • 1马艺馨,徐苓安,姜常珍,邵嘉庆.电阻层析成像技术的研究[J].仪器仪表学报,2001,22(2):195-198. 被引量:24
  • 2李爱芹.线性方程组的迭代解法[J].科学技术与工程,2007,7(14):3357-3364. 被引量:16
  • 3唐磊.电学成像系统图像重建算法研究及可视化软件设计[D].天津:天津大学,2008.
  • 4张雪辉,王化祥.电容层析成像数字化系统设计[J].传感技术学报,2007,20(8):1826-1830. 被引量:6
  • 5Brown B H. Medical Impedance Tomography and Process Impedance Tomography : a Brief Review [ J ]. Meas. Sci. Technol. , 2001,12:991-996.
  • 6Brown B H, Barber D C. Electrical Impedance Tomography: the Construction and Application of Electrical Impedance Images [ J ]. Medical Progress through Technology, 1987,13:69-75.
  • 7Yang Wuqiang, Peng Lihui. Image Reconstruction Algorithms for Electrical Capacitance Tomography [ J ]. Measurement Science and Technology ,2003,14 : 1 - 13.
  • 8Vauhkonen M, Vadasz D, Kaipio J P, et al. Electrical Impedance Tomography with Basis Constraints [ M ]. Inverse Problems, 1997, 13:523-530.
  • 9Hanke M. Conjugate Gradient Type Methods for Ill Posed Problems [ M ]. Scientific & Technical, Longman, Harlow, 1995.
  • 10Rajen Manicon Murugan. An Improved Electrical Impedance Tomography (EIT)Algorithm for the Detection and Diagnosis of Early Stages of Breast Cancer [ D ]. PHD thesis, University of Manitoba, 1999.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部