期刊文献+

GLRAM与LDA相结合的人脸识别

Face recognition combining GLRAM with LDA
下载PDF
导出
摘要 提出了一种GLRAM(矩阵的广义低秩逼近)与LDA(线性判别分析)相结合的人脸识别方法。首先利用GLRAM方法获得人脸图像的有效特征,然后通过LDA对获得的特征进行进一步的降维并获得最佳分类特征。这样使得抽取特征的判断能力得到了显著增强。实验结果表明,该算法在较短的时间内取得了较高的识别率,效果优于单独运用GLRAM方法和LDA方法。 This paper proposes a method of face recognition combining GLRAM(Generalized Low Rank Approximations of Matrices) with LDA(Linear Discriminant Analysis).Firstly,effective feature can be obtained using GLRAM,and then LDA is used to depress the feature dimension and acquire the best classification feature.This enhances the discriminatory power of extracted features.Experimental results demonstrate that higher recognition rate can be achieved in shorter time.This proposed method outperforms GLRAM and LDA methods.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第13期194-196,220,共4页 Computer Engineering and Applications
关键词 人脸识别 矩阵的广义低秩逼近(GLRAM) 线性判别分析(LDA) face recognition Generalized Low Rank Approximations of Matrices(GLRAM) Linear Discriminant Analysis(LDA)
  • 相关文献

参考文献12

  • 1刘青山,卢汉清,马颂德.综述人脸识别中的子空间方法[J].自动化学报,2003,29(6):900-911. 被引量:117
  • 2Peter N B,Joao P H,David J K.Eigenfaces vs Fisherfaces recognition using class specific linearprojection[J].IEEE Trans on Pattern Anal Machine Intell,1997,19(7):711-720.
  • 3Yu Hua,Yang Jie.A direct LDA algorithm for high-dimensional data-with application to face recognition[J].Pattern Recognition,2001,34(10):2067-2070.
  • 4王婷,杨国胜,薛长松.若干人脸识别算法的比较研究[J].河南大学学报(自然科学版),2007,37(2):191-194. 被引量:6
  • 5Ye Jie-ping.Generalized low rank approximations of matrices[C]//The 21st International Conference on Machine Learning,2004:887-894.
  • 6Liang Zhi-zheng,Zhang D,Shi Peng-fei.The theoretical analysis of GLRAM and its applications[J].Pattern Recognition,2007,40(3):1032-1041.
  • 7Liu Jun,Chen Song-can.Non-iterative generalized low rank approximation of matrices[J].Pattern Recognition Letters,2006,27 (9):1002-1008.
  • 8方盛昌.一种改进的Fisher判别方法在人脸识别中的应用[J].计算机应用,2007,27(B12):87-88. 被引量:3
  • 9TheodoridisS,KoutroumbasK.模式识别[M].2版.李晶皎,王爱侠,张广渊,等译.北京:电子工业出版社,2004:107-115.
  • 10DudaRO HartPE DavidG. Stork著 李宏东 姚天翔等译.模式分类[M].北京:机械工业出版社,2003..

二级参考文献85

  • 1武妍,宋金晶.基于PCA余像空间的ICA混合特征人脸识别方法[J].计算机应用,2005,25(7):1608-1610. 被引量:2
  • 2Hjelmas E, Low B K. Face detection: A survey. Journal of Computer Vision and Image Understanding, 2001, 83(3) : 236-274.
  • 3Yang M H, Ahuja N, Kriegman D. Detecting faces in images: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(1): 34-58.
  • 4Toyama K. Prolegomena for robust face tracking. MSR- Tech-Report-98-65, Microsoft, 1998.
  • 5Samal A, lyengar P. Automatic recognition and analysis of human faces and facial expressions: A survey. Pattern recognition, 1992, 25(1) : 65--77.
  • 6Zhao W, Chellappa R, Rosenfeld A, Phillips P J. Face recognition- A literature survey. CS-Tech Report-4167, University of Maryland, 2000.
  • 7Zhou J, Lu C Y, Zhang C S, Li Y D. A survey of face recognition. Acta Electronica Sinica, 2000, 28(4) : 102--106(in Chinese).
  • 8Chellappa R, Wilson C L, Sirohey S. Human and machine recognition of faces: A survey. Proceedings of the IEEE,1995, 83(5): 705--740.
  • 9Bledsoe W. Man-machine facial recognition. Tech Report PRI-22, Panoramic Research Inc., Palo Alto, CA, 1966.
  • 10Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs Fisherfaee: Recognition using class special linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7) : 711-720.

共引文献162

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部