摘要
首先提出变形的BP算法IBP,然后将它与Solis和Wets的随机优化算法相结合,提出了新型混合学习算法NHLA。算法具有能以概率1全局收敛于误差函数最小值的性质。
A new hybrid learning algorithm NHLA, which combines the variant IBP of algorithm BP and the random optimization algorithm presented by Dr Solis and Wets, is presented. NHLA can ensure global convergence to the minimum of the error function with probability 1. Therefore it overcome the drawback of algorithm BP that it sometimes fails to converge to the global minimum of the error function.
出处
《控制与决策》
EI
CSCD
北大核心
1998年第A07期504-507,512,共5页
Control and Decision
基金
国家自然科学基金
关键词
BP算法
全局收敛
混合学习算法
NHLA
BP algorithm, random optimization, global convergence, learing algorthms