摘要
针对板带轧制过程厚度自动控制(AGC)问题,提出逆动态自适应神经网络AGC(VANN-AGC)系统,并给出适于过程控制的网络激励函数和改进的BP网络训练方法。仿真结果表明:VANN-AGC系统可自适应地实现快速跟随响应和抗扰调节;新的网络激励函数和训练方法适用于过程控制的需要;
This paper presents an inverse dynamic neural network AGC system, puts forward a network activation function suitable for control, and improves the training method of backpropagation (BP) applying to dynamic process control. The simulation results show that the VANN-AGC system can adaptively realize fast following response and regulating against any disturbance. It is proved that the new network activation function and the improved BP training method are suitable for process control. The stable error of the system is limited in ±5μm.
出处
《控制与决策》
EI
CSCD
北大核心
1998年第A07期438-442,共5页
Control and Decision
基金
辽宁省科学技术基金
关键词
自适应控制
神经网络
AGC系统
automatic gauge control (AGC), inverse dynamic adaptive neural network, network activation function, BP training method