摘要
对多变量系统设计了神经网络PID控制,解决了多变量系统P、I、D参数难以整定的问题。基于对象模型,提出了一种新型神经网络控制器的训练方法,该方法用多步二次型性能指标函数去训练控制器的权值,从而提高了控制器参数的收敛速度和系统的响应性能,降低了各通道之间的耦合。
Neural network PID control is designed for multivariable system, which solutes the difficulty that P,I,D parameter for multivariable system is not easily ascertained. Based on the plant model, a novel training method of neural network controller is proposed. The method uses multi-step quadratic index function to train the weights of the controller; therefore, it improves the convergence speed of the controller parameter and the system response performance, and reduces the coupling of all channels. The theoretical analysis and simulation experiment illustrate the effectiveness of the technique.
出处
《控制与决策》
EI
CSCD
北大核心
1998年第A07期448-452,458,共6页
Control and Decision
基金
辽宁省自然科学基金
关键词
多变量系统
神经网络
PID控制
鲁棒性
multivariable system,neural network PID control, multi-step quadratic index function, training, coupling