期刊文献+

求解非光滑凸最小值问题的自适应信赖域方法 被引量:2

A adaptive trust region method for nonsmooth convex minimization
下载PDF
导出
摘要 针对非光滑凸最小值问题提出一个自适应的信赖域方法,在利用Moreau-Yosida正则化将非光滑凸最小值问题转化为可微凸最优化问题的基础上,应用自动确定信赖域方法,每次迭代都充分利用当前迭代点包含的二次信息自动产生一个信赖域半径。在合适条件下,证明了全局收敛性和局部超线性收敛性质。 A self-adaptive trust region method for nonsmooth convex minimization is presented.This paper first transforms the nonsmooth convex minimization into a differentiable convex minimization by using the Moreau-Yosida regularization. The proposed algorithm automatically generates a trust-region radius by using the adaptive trust-region method,each iteration using the second order information of the current iteration point.Under appropriate conditions,the proposed algorithm proved globally and local superlinearly convergent.
作者 唐江花
出处 《桂林电子科技大学学报》 2010年第2期179-181,共3页 Journal of Guilin University of Electronic Technology
基金 国家自然科学基金(10661005)
关键词 凸最小值问题 信赖域方法 全局收敛 半光滑 convex minimization trust-region method global convergence semi-smoothness
  • 相关文献

参考文献7

  • 1QI L. Second-order analysis of the Moreau-Yosida approximation of a convex function[C]//Applied Math. Report AMR 94/ 20, School of Mathematics, The University of New South Wales, Sydney, Australia, 1994.
  • 2Zhang Liping. A new trust region algorithm for nonsmooth convex minimization[J]. Applied Mathematics and Computation, 2007,193(1) : 135-142.
  • 3李改弟.一个自动确定信赖域半径的信赖域方法[J].工程数学学报,2006,23(5):843-848. 被引量:28
  • 4HIRIART-URRUTY J B, LEMARECHAL C. Convex analysis and minimization algorithms [M]. Springer-Verlay, Berlin, Heidelberg, 1993.
  • 5FUKUSHIMA M, QI L. A globally and superlinearly convergent algorithm for nonsmooth convex minimization[J]. SIAM Journal on Optimization 1996, 6(4) : 1106-1120.
  • 6Fan Jinyan, YUAN Y. A new trust region algorithm with trust region radius converging to zero[A]. Techniques and Applications [C]. Hong Kong: Proceedings of the 5th International Conference on Optimization, 2001.
  • 7李梅艳,马昌凤.求解非线性互补问题的FB线搜索方法[J].桂林电子科技大学学报,2008,28(5):438-441. 被引量:5

二级参考文献11

  • 1陈小红,马昌凤.非线性互补问题光滑牛顿法的全局收敛性[J].桂林电子科技大学学报,2006,26(5):402-405. 被引量:9
  • 2FRANCISCO FACCHINEI, PANG JONG-SHI. Finite-Dimensional Variational Inequalities And Complementarity Problems [M]. New York: Springer, 2003.
  • 3Powell M J D. A new algorithm for unconstrained optimization, In: J B Rosen, O L Mangassarian and K Ritter, eds., Nonlinear Programming[C]// New York: Academic press, 1970:31-66
  • 4Sartenaer A. Automatic determination of an initial trust region in nonlinear programming[J]. SIAM J Sci Comput, 1997,18:1788-1803
  • 5Fan Jinyan, Yuan Y. A new trust region algorithm with trust region radius converging to zero, Proceedings of the 5th International Conference on Optimization: Techniques and Applications[C]// Dec.2001, Hong Kong
  • 6Zhang X S, Zhang J L, Liao L.-Z. An adaptive trust region method and its convergence[J], Science in China(Series A), 2002,45:620-631
  • 7More J J. Recent developments in algorithms and software for trust region methods, In: A Bachem, M Grotschel and B Korte, eds, Mathematical Programming: The State of Art[C]//Berlin: Springer, 1983:258-287
  • 8Powell M J D. Convergence properties of a class of minimization algorithms, in O L Mangasarian, R R Meyer and S M Robinson eds., Nonlinear Programming[M]. New York: Academic Press, 1975:1-27
  • 9Nocedal J, Yuan Y, Combining trust region and line search techniques, In: Y Yuan, ed.Advances in Nonlinear Programming[C]// Berlin: Kluwer, 1998:153-175
  • 10More J J, Garbow B S, Hillstrom K H. Testing unconstrained optimization software[J]. ACM Trans Math Software, 1981,7:17-41

共引文献31

同被引文献16

  • 1李改弟.一个自动确定信赖域半径的信赖域方法[J].工程数学学报,2006,23(5):843-848. 被引量:28
  • 2FAN J Y.Convergence rate of the trust region method for nonlinear equations under error bound condition[J].Computational Optimization and Applications,2006,34(2):215-227.
  • 3ZHANG H C,HAGER W W.A nonmonotone line search technique and its application to unconstrained optimization[J].SIAM Journal on Optimization,2004,14(4):1043-1056.
  • 4POWELL M J D.Convergence Properties of a Class of Minimization Algorithms[M].New York:Nonlinear Programming,Academic Press,1975:1-27.
  • 5MORE J J.Recent Developments in Algorithms and Software for Trust Region Methods[M].Berlin:mathematical Programming:The State of Art Springer,1983:258-287.
  • 6Brezinski C.A classification of quasi-Newton methods[J].Numerical Aglorithms,2003,33:123-135.
  • 7Perez R,Lopes V L R.Recent applications and numerical impelmentation of quasi-Newton methods for solving nonlinear systems of equations[J].Numerical Aglorithms,2004,35:261-285.
  • 8Yamashita N,Fukushima M.On the rate of convergence of the Levenberg-Marcluardt method[J].Computing,2001,15:237-249.
  • 9Zhang H C,Hager W W.A nonmonotone line search technique and its application to unconstrained optimization[J].SIAM Journal on Optimization,2004,14 (4):1043-1056.
  • 10More J J,Garbow B S,Hilistrom K E.Testing unconstrained optimization[J].ACM Tram Math Software,1981(7):17-41.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部