期刊文献+

植物源铁生物有效性及评价方法研究进展 被引量:1

Progress in iron bioavailability and assessment method of plant-source food
下载PDF
导出
摘要 缺铁是个世界性的营养失衡问题,给人类健康和经济发展带来严重的负面影响。主要膳食中的铁缺乏或低生物有效性被认为是造成铁缺乏的主要原因。通过植物育种措施,尤其是提高植物源铁富集育种被认为是解决铁营养失衡最经济且有效的途径。然而,近年的研究表明,人体铁吸收与植物源有效铁量密切相关,而与铁积累总量没有相关性。快速、准确的评价植物源铁生物有效性对高有效性富铁作物育种意义重大。本文阐述了植物源铁富集和生物有效性的基因型差异及影响因素,并分析了铁生物有效性评价方法的优缺点,为植物源铁生物有效性育种及评价提供参考。 Iron deficiency is a widespread major micronutrient malnutrition problem for human beings,and it is believed to affect body health and economy development in the world.The problem of iron deficiency in human is due to an insufficient amount and poor bioavailability of iron in staple foods.Strategies for alleviating iron deficiency include medication,food diversification,food fortification,and biofortification combined with agronomic fortification.Biofortification approach through agriculture has been recognized as a sustainable,relatively simple,and realistic way to reduce and prevent iron deficiency.However,recent studies indicate that iron absorption is dependent on the bioavailable iron, rather than on total amount of iron in meals.The objectives of this paper are to review on the advances in studies of genotypic differences in iron content,iron bioavailability and their affecting factors,and to analyze the advantages and disadvantages of several methods for assessing iron bioavailability from plant-source foods.
出处 《植物营养与肥料学报》 CAS CSCD 北大核心 2010年第2期485-491,共7页 Journal of Plant Nutrition and Fertilizers
基金 Harvest Plus-China项目(No.8022) 科技部国际合作项目(No.2006DFA31030) 河南科技大学博士启动基金项目(09001406)
关键词 植物源 铁富集 铁生物有效性 影响因素 评价方法 Plant-source food iron content iron bioavailability factor assessment method
  • 相关文献

参考文献58

  • 1Gregorio G B, Senadhira D, Htut T et al. Improving iron and zinc value of rice for human nutrition [J]. Agric Devel., 1999, 23: 68- 81.
  • 2WHO. Malnutrition worldwide [ E/OL ]. http://www, who. int/nut/ malnutrition-worldwide.htm. 1999. 1-13.
  • 3Meng F H, Wei Y Z, Yang X E. Iron content and bioavailability in rice [J]. J. Trace Elem. Med. Biol., 2005, 18(4), 333-338.
  • 4Glahn R P, Cheng Z Q, Welch R M. Comparison of iron bioavailability from 15 rice genotypes: Studies using an in vitro digestion/Caco-2 cell culture model [J]. J. Agric. Food Chem., 2002, 50: 3586- 3591.
  • 5Lucca P, Hurrell R, Potrykus 1, Fighting iron deficiency anemia with iron-rich rice [J]. J. Am. Coll. Nutr., 2002, 3: 184S- 190S.
  • 6Prom-u-thai C, Huang L, Glahn R P et al. Iron (Fe) bioavailabil ityAnd the distribution of anti-Fe nutrition biochemicals in the unpol ished, polished grain and Bran fraction of five rice genotypes [J]. J Agric. Food Sci., 2006, 86: 1209-1215.
  • 7Mi G H, Chen F J, Liu X S et al. Genotype difference in iron content in kernels of maize [J]. J. Maize Sci., 2004, 12: 13-15.
  • 8Morgounov A, Gomez-Becerra H, Abugalieva A et al. Iron and zinc grain density in common wheat grown in Central Asia [J]. Euphytica, 2007, 155(1-2) : 193-203.
  • 9Prom-u-thai C, Rerkasem B. Grain iron concentration in Thai rice germplasm [J]. Devel. Plant Soil Sci., 2001, 92: 350-351.
  • 10Vasconcelos M, Datta K, Oliva N et al. Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene [J]. Plant Sci., 2003, 164: 371-378.

二级参考文献76

共引文献71

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部