期刊文献+

伪Halin-图的无循环边着色 被引量:3

The Acyclic Edge Coloring of Pseudo Halin-Graphs
下载PDF
导出
摘要 图G的无循环边着色是指图G的正常的边着色且任意的圈上不着双色.图G的无循环边色数是指对G进行无循环边着色所需的最少色数k,记为a′(G).给出了伪Halin图的无循环边色数满足猜想a′(G)Δ(G)+2,并且对任意的伪Halin图G且G≠K4,有a′(G)=Δ(G). An acyclic edge coloring of a graph is a proper edge coloring and there are no bichromatic cycles.The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and it is denoted by a′(G),This paper studies the acyclic edge coloring chromatic index of Pseudo Halin-graphs. And the study has proved a′(G)=Δ(G) when G≠K4.
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第2期13-15,共3页 Journal of Henan Normal University(Natural Science Edition)
关键词 无循环边着色 无循环边色数 伪Halin图 pseudo Halin -graph acyclic edge coloring acyclic edge chromatic index
  • 相关文献

参考文献2

二级参考文献13

  • 1许振宇.1-树与外平面图的无圈边着色[J].山东科技大学学报(自然科学版),2004,23(3):95-97. 被引量:1
  • 2J.A.Bondy,U.S.R.Murty.Graph theory with Application[M].New York,Mamilcan Press,1976.
  • 3B.Grünbaum.Acyclic coloring of planar graphs[J].Israel J.of Math,1973,14:390~408.
  • 4N.Alon,B.Sudakov,A.zaks.Acyclic edge colorings of graphs[J].J.of graph theory,2001,37:157~167.
  • 5Halin R. Studies on Minimally n- connected Graph, in:Comb. Math. and its applications[ M ]. (Proc. Conf. Oxrod), London:Academic Press, 1969.
  • 6Kronk H V. Mitchem J. A seven - colour Theorem onthe Sphere[J]. Discrete Math., 1973(5) :253 -260.
  • 7Zhang Zhongfu, Wang Jianfang, Wang Weifan, et al.The Complete Chromatic Number of Some Planar Graphs[J]. Scientia Sinica (Science in China ) , Series A. 1993(4) :395 - 400.
  • 8Bondy J A, Murty U S R. Graph Theory with Applications [M]. New York: The Macmillan Press Ltd., 1976.
  • 9Odile Favaron, Hao Li, Schelp R H., Strong edge colorings of graphs[J]. Discrete Mathematics, 1996,159:103- 109.
  • 10Bums A C. Vertex- distinguishing proper edge - colorings[J]. J. of Graph Theory, 1997,22(2):73-82.

共引文献3

同被引文献15

  • 1闫立军,王淑栋,马芳芳.系列平行图和Meredith图的关联着色[J].高校应用数学学报(A辑),2008,23(4):481-486. 被引量:3
  • 2徐幼专,徐立新.扇形图P_1∨P_m中保Wiener指数的树[J].郑州大学学报(理学版),2006,38(3):32-34. 被引量:6
  • 3Grinbaum B.Acyclic colorings of planar graphs[J].Israel J Math,1973,14:390-408.
  • 4Borodin O V.On acyclic coloring of planar graphs[J].Discrete Mathmatics,1979,25:211-236.
  • 5Burnstein M I.Every 4-valent graph has an acyclic 5 coloring[J].Soob(s)(c) Akad Nauk Gruzin SSR,1979,93:21 -24.
  • 6Alon N,Sudakov B,Zaks A.Acyclie edge colorings of graphs[J].J Graph Theory,2001,37:157 -167.
  • 7Alon N,Zaks A.Algorithmic aspects of acyclic edge colorings[J].Algorithmica,2002,32:611-614.
  • 8Basavaaraju M,Chandran L S.Acvclic edge colorings of subcubic graphs[J].Discrete Mathematics,2008,308:6650 -6653.
  • 9刘晓姗,王琦,李霞.P_2×C_n的k-边优美的图标号[J].郑州大学学报(理学版),2007,39(4):19-21. 被引量:2
  • 10陈方珂,杨玉军.p部图的Kirchhoff指标上界[J].四川师范大学学报(自然科学版),2009,32(1):51-55. 被引量:3

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部