期刊文献+

一类具有非线性扩散和时滞的捕食系统的持续性与周期解 被引量:3

PERSISTENCE AND PERIODIC SOLUTION OF A PREDATOR-PREY SYSTEM WITH NONLINEAR DIFFUSION AND DELAY
原文传递
导出
摘要 研究了一类具有非线性扩散和Beddington-Deangelis功能性反应,且同时具有连续时滞和离散时滞的非自治两食饵一捕食者系统,证明了在适当条件下该系统是一致持久的,并且得到了系统正周期解全局渐近稳定的充分条件.最后,给出一个例子以说明得到的结果. This paper considers a kind of nonautonomous Two-prey One-predator models with nonlinear diffusion, Beddington-Deangelis functional response, discrete delay and contin- uous time delay. It is proved that the system can be persistent under certain conditions. Furthermore, sufficient conditions which guarantee the global asymptotic stability of positive periodic solution of the system are obtained. Finally, an example is given to demonstrate the results.
出处 《系统科学与数学》 CSCD 北大核心 2010年第4期515-529,共15页 Journal of Systems Science and Mathematical Sciences
基金 内蒙古自治区高等学校科学研究(NJzc08134)项目资助
关键词 非线性扩散 时滞 一致持久 正周期解 Nonlinear diffusion, delay, uniform persistence, positive periodic solution
  • 相关文献

参考文献10

  • 1Freedman H I, Waltman P. Mathematical models of population interaction with dispersal I: Stability of habitats with and without a predator. SIAM J. Appl. Math., 1997, 32: 631-648.
  • 2Freedman H I, Rai B, Waltman P. Mathematical models of population interaction with dispersal II: Differential survival in a change of habitat. J. Math. Anal. Appl., 1986, 115: 140-154.
  • 3Cui J, Chen Lansun. The effect of diffusion on the time varying Logistic population growth. Comput. Math. Appl., 1998, 36: 1-9.
  • 4Song X, Chen Lansun. Persistence and global stability for nonautonomous predator-prey system with diffusion and time delay. Comput. Math. Appl., 1998, 35: 33-40.
  • 5Dou Jiawei, Chen Lansun. Persistence and Global Stability for a Kind of Nonautonomous Competition System with Time Delay. World Scientific Press, Singapore, 1998.
  • 6Allen L J. Persistence and extinction in single species reaction diffusion models. Bull. Math. Biol., 1983, 45: 209-227.
  • 7Zhou X, Shi X, Song X. Analysis of nonautonomous predator-prey model with nonlinear diffusion and time delay. Appl. Math. Comput., 2008, 15(1): 129-136.
  • 8Zhang X, Chen Lansun. The linear and nonlinear diffusion of the competitive Lotka-Volterra model. Nonlinear Analysis, 2007, 66: 2767-2776.
  • 9Teng Zhidong. Nonautonomous Lotka-Volterra system with delays. Journal of Differential Equa- tions, 2002, 179: 538-561.
  • 10Kuang Y. Delay Differential Equation with Application in Population Dynamics. Academic Press, New York, 1993.

同被引文献21

  • 1黄利航,陈斯养.一类具有时滞的捕食与被捕食模型的Hopf分支[J].西北师范大学学报(自然科学版),2004,40(4):12-18. 被引量:12
  • 2田宝丹,汪海玲.具有Holling Ⅳ类功能性反应的非自治扩散系统的持久生存[J].四川师范大学学报(自然科学版),2004,27(6):610-613. 被引量:8
  • 3Teng Z .On the petitive almost periodic solutions of a class of Lotka-Volterra type systems with delays [J]. Meth Anal Appl, 2000, 249: 433-444.
  • 4Berebetogu H,Gyori I.Global asymptotic stability in a nonautonmous Lotka-Voherra typesystems with infinite delay [J]. Meth Anal Appl, 1997, 210: 279-291.
  • 5Teng Z, Yu Y. Some new results of nonautonmous Lotka-Voherra competitives systems with delays [J]. Math Anal Appl, 2000, 241: 254-275.
  • 6Beretta E,Kuang Y. Global analyses in some delayed ratio-dependent predator-prey systems [J]. Nonlinear Anal, 1998,32 (3):381-408.
  • 7LO Sheng-dai.Nonconstant periodic solutions in predator-prey system with continuous time delay [J].Math Biosci, 1981, 53: 149-157.
  • 8Zhidong Teng,Zhengyi Lu.The effect of dispersal on single-species nonautonomous dispersal models with delays[J]. Journal of Mathematical Biology . 2001 (5)
  • 9Global stability and predator dynamics in a model ofprey dispersal in a patchy environment. Nonlinear Analysis Theory Methods Applications . 1989
  • 10Z.Zhang,Z.Wang.Periodic solution for a two-species non-autonomous competition Lotka-Volterra patch system withtime delay. J,.Math.Anal.Appl . 2002

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部