期刊文献+

多时滞三种群系统的Hopf分支 被引量:5

HOPF BIFURCATION OF THREE SPECIES SYSTEM WITH TIME DELAYS
原文传递
导出
摘要 讨论了具有两个时滞的3种群模型,分析了系统正平衡点的稳定性和Hopf分支的存在性;然后利用中心流形定理和规范型方法,给出了确定分支周期解的分支方向与稳定性的计算公式,利用数值模拟验证了所得结论. In this paper, a three species system with two time delays is studied. The stability of the positive equilibrium and the existence of Hopf bifurcation are investigated. By using the normal form theory and center manifold argument, the explicit formulae which determine the stability, the direction and the other properties of bifurcating periodic solutions are derived. Finally some numerical simulations are carried out to illustrate the obtained results.
出处 《系统科学与数学》 CSCD 北大核心 2010年第4期530-540,共11页 Journal of Systems Science and Mathematical Sciences
基金 山西省自然科学基金项目(2009011005-3) 山西省重点扶持学科项目 山西省科技开发项目(2007151)
关键词 种群时滞模型 HOPF分支 稳定性 中心流形定理 规范型 Species model of delay, Hopf bifurcation, stability, center manifold argument, normal form.
  • 相关文献

参考文献10

  • 1徐瑞,陈兰荪.具有时滞和基于比率的三种群捕食系统的持久性与全局渐近稳定性[J].系统科学与数学,2001,21(2):204-212. 被引量:85
  • 2Xu Rui, Chen Lansun, Hao Feilong. Periodic solutions of a discrete time Lotka-Volterra type food-chain model with delays. Applied Mathematics and Computation, 2005, 171(1): 91-103.
  • 3Wang Qi, Dai Binxiang. Existence of positive periodic solutions for neutral population model with delays. International Journal of Biomathematics, 2008, 1(1): 107-120.
  • 4Ruan Shigui, Wei Junjie. On the zeros of transcendental functions with applications to stability of delay differential equations with two delays. Mathematical Analysis, 2003, 10: 863-874.
  • 5Song Yongli, Peng Yahong, Wei Junjie. Hopf bifurcations for a predator-prey syetem with two delays. Journal of Mathematical Analysis and Applications, 2008, 337: 466-479.
  • 6Zhang Jinzhu, Jin Zhen, Yan Jurang, Sun Guiquan. Stability and Hopf bifurcation in a delayed competition system. Nonlinear Analysis, 2009, 70(2): 658-670.
  • 7Li Jianquan, Ma Zhien. Stability switch in a class of characteristic equations with delay-dependent parameters. Nonliear Analysis, 2004, 5: 389-408.
  • 8Kuang Y. Delay Differential Equations with Applications in Population Dynamics. Boston: Academic Press, 1993.
  • 9He Zerong. Global dynamics of nonlinear two-staged age-depenedent populations. International Journal of Biomathematics, 2008, 1(4): 449- 461.
  • 10Freedman H I, Hari Rao V S. The trade-off between mutual interference and time lags in predatorprey systems. Bulletin of Mathematical Biology, 1983, 45: 991-1004.

二级参考文献4

  • 1Kuang Y,J Math Biol,1998年,36卷,389页
  • 2He X Z,J Math Anal Appl,1996年,198卷,355页
  • 3Kuang Y,Delay Differential Equations with Applications in Population Dynamics,1983年
  • 4Kuang Y

共引文献84

同被引文献28

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部