摘要
在不假定锥正规、再生和算子连续的条件下,利用锥理论和单调迭代方法证明了一类非线性算子方程x=A(x,x)解的存在性定理,并应用于Banach空间一阶微分方程的终值问题.
In this paper, we use the cone theory and monotone iterative technique to prove the existence theorems of solutions for a class of nonlinear operator equations without the assumption of continuity and generating normality of cone. The results obtained are applied to terminal value problems for differential equations on unbounded domains in Banach spaces.
出处
《数学的实践与认识》
CSCD
北大核心
2010年第8期179-183,共5页
Mathematics in Practice and Theory
基金
国家自然科学基金(10971179)
关键词
锥
算子方程
单调迭代方法
终值问题
cone
operator equations
monotone iterative technique
terminal value problems