期刊文献+

基于集中质量方法的特征值的下界逼近 被引量:1

Lower Approximation of Eigenvalues by the Lumped Mass Method
原文传递
导出
摘要 对一维的特征值问题分析了集中质量方法,证明了集中质量方法的单调性:设网格J′_h是网格J_h的任意加密,λ′_1和λ_1为相应的近似特征值,则有λ_1≤λ′_1. In this paper, we analyze the lumped mass method for the one dimensional eigenvalue problem. We prove that the lumped mass method is monotone in the sense that λ1≤λ'1 provided that they are corresponding eigenvalues on the meshes Jh and J'h with J'h some refinement of Jh.
作者 李友爱
出处 《数学的实践与认识》 CSCD 北大核心 2010年第8期225-228,共4页 Mathematics in Practice and Theory
关键词 集中质量 有限元方法 特征值 下界逼近 lumped mass finite element method eigenvalue lower approximation
  • 相关文献

参考文献1

二级参考文献8

  • 1I. Babuska and J.E. Osborn, Finite element-Galerkin Approximation of the Eigenvalues and Eigenvectors of Selfadjoint Problem, Math. Comp., 52 (1989), 275-297.
  • 2I. Babuska and J.E. Osborn, Eigenvalue Problems, in Handbook of Numerical Analysis,V.Ⅱ: Finite Element Methods(Part Ⅰ), Edited by P.G.Ciarlet and J.L.Lions, 1991, Elsevier.
  • 3K.J. Bathe and E.L. Wilson, Numerical methods in finite element analysis, Prentice-Hall, 1976.
  • 4Chuanmao Chen and Yunqing Huang, High Accuracy Theory of Finite Element Methods, Hunan Science Press, 1995.
  • 5L.S. Jiang and Z.Y. Pang, Finite Element and its Mathematical Foundation, People Education Press, 1979.
  • 6Hongmei Shen, The lower approximation of eigenvalue and it's relative problem, Master thesis ,Xiangtan unvi., 1999.
  • 7G.Srang and G.J.Fix, Analysis of the finite element method, Prentice-Hall, 1973.
  • 8P. Tong, T.H. Pian and L.L. Bucciarelli, Mode shapes and frequencies by the finite element method using consistent and lumped mass finite element, J. Comp. Struct, 1 (1971), 623-638.

共引文献10

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部