摘要
针对k最近邻填充算法(kNNI)在缺失数据的k个最近邻的选择上可能存在偏好,提出一种新的缺失填充算法:象限近邻填充算法QENNI(quadrant-encapsidated-nearest-neighbor-based imputation),它仅仅使用缺失数据象限方向的最近邻数据填充该缺失值,避免了kNNI中选取的k个最近邻点有偏好这一情况。另外,此算法对于低维数据集可以是无参的,即消除了对参数的依赖。实验结果表明,QENNI算法的填充准确性要优于kNNI算法。
As the k-nearest neighbor imputation (kNNI) algorithm is often biased in choosing the k nearest neighbors of missing data,a new imputation method is put forward ,Quadrant-Encapsidated-Nearest- Neighbor based Imputation method (QENNI) ,for missing values. The algorithm uses the quadrant nearst neighbors (points of the encapsulant) around a missing datum to impute the missing datum. It is not biased in selecting nearest neighbors. Experiments demonstrate that QENNI is much better than the kNNI method in imputed accuracy.
出处
《广西师范大学学报(自然科学版)》
CAS
北大核心
2010年第1期72-76,共5页
Journal of Guangxi Normal University:Natural Science Edition
基金
国家973计划资助项目(2008CB317108)
国家自然科学基金资助项目(90718020)
澳大利亚ARC基金资助项目(DP0985456)
广西研究生教育创新计划项目(2009106020812M63)