期刊文献+

一种基于改进似然比的术语自动抽取方法 被引量:1

A Term Extraction Approach Based on Modified Log-likelihood Ratio
下载PDF
导出
摘要 术语自动抽取是信息处理领域的基础性课题,日益受到研究者的关注。似然比方法能有效抽取低频词汇,但抽取准确率偏低。为了解决这个问题,将似然比的抽取结果用C-value进行改进。实验证明,两者相结合,在保证似然比方法高召回率的前提下,比单纯依靠似然比方法抽取准确率提高了约8%。 Term extraction is a basic subject in information processing and is attracting more and more attention nowadays. In order to extract low frequency words effectively, Log-likelihood ratio method is used but with a low precision rate. To solve this problem,C-value method is used to deal with the results of Log-likelihood ratio. Experiment results show that by combining the two methods ,the precision is improved in the premise of ensuing high recall rate of Log-likelihood ratio method. The proposed method can improve the precision by about 8; compared with the Log-likelihood ratio method.
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2010年第1期153-156,共4页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家863计划资助项目(2007AA01Z172) 国家自然科学基金面上资助项目(60673019 60673037)
关键词 低频词 对数似然比 C—value 术语抽取 low-frequency word Log-likelihood ratio C-value term extraction
  • 相关文献

参考文献5

  • 1索红光,杨涛.基于互信息的Web文档聚类方法[J].广西师范大学学报(自然科学版),2007,25(2):131-134. 被引量:3
  • 2DIAS G,GUILLOR S,BASSANO J C,et al.Combining linguistics with statistics for multiword term extraction:a fruitful association[C]//Proceedings of Recherched Informations Assiste par Ordinateur.Paris:College de France,2000:157-173.
  • 3DUNNING T.Accurate methods for the statistics of surprise and coincidence[J].Association for Computational Linguistics,1993,19(1):61-76.
  • 4SILVA J,LOPES G.A local maxima method and a fair dispersion normalization for extracting multiword units[C]// Proceedings of the 6th Meeting on the Mathematics of Language.Florida:University of Central Florida,1999:369-381.
  • 5FRANTZI K T,ANANIADOU S.The C-value/NC-value domain independent method for multi-word term extraction[J].Journal of Natural Language Processing,1999,6(3):145-179.

二级参考文献11

共引文献2

同被引文献12

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部