期刊文献+

一种基于时态密度的倾斜分布数据流聚类算法 被引量:17

Clustering Algorithm on Data Stream with Skew Distribution Based on Temporal Density
下载PDF
导出
摘要 为解决倾斜分布的数据流聚类这一难题,提出了时态密度概念,给出其度量,揭示了其包括可增量计算在内的一系列数学性质;设计了时态密度树结构,提高了聚类时的存储和检索效率;设计了能够以实时或异步方式捕捉数据倾斜分布的数据流时态特征的聚类算法TDCA(temporal density based clustering algorithm),其时间复杂度为O(c×m×lgm).实验结果表明,该算法不仅有较强的功能,而且具有较好的规模可伸缩性. To solve the problem of clustering this paper proposes a concept of temporal density, which reveals a set of mathematical properties, especially the incremental computation. A clustering algorithm named TDCA (temporal density based clustering algorithm) with time complexity of O(c×m×lgm) is created with a tree structure implemented for both storage and retrieve efficiency. TDCA is capable of capturing the temporal features of a data stream with skew data distribution either in real time or on demand. The experimental results show that TDCA is functionable and scalable.
出处 《软件学报》 EI CSCD 北大核心 2010年第5期1031-1041,共11页 Journal of Software
基金 国家自然科学基金No.600773169 国家"十一五"科技支撑计划No.2006BAI05A01~~
关键词 数据流聚类 时态密度 倾斜分布 data stream clustering temporal density skew distribution
  • 相关文献

参考文献1

二级参考文献52

  • 1Babcock B, Babu S, Datar M, Motwani R, Widom J. Models and issues in data streams. In: Popa L, ed. Proc. of the 21st ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems. Madison: ACM Press, 2002. 1~16.
  • 2Terry D, Goldberg D, Nichols D, Oki B. Continuous queries over append-only databases. SIGMOD Record, 1992,21(2):321-330.
  • 3Avnur R, Hellerstein J. Eddies: Continuously adaptive query processing. In: Chen W, Naughton JF, Bernstein PA, eds. Proc. of the 2000 ACM SIGMOD Int'l Conf. on Management of Data. Dallas: ACM Press, 2000. 261~272.
  • 4Hellerstein J, Franklin M, Chandrasekaran S, Deshpande A, Hildrum K, Madden S, Raman V, Shah MA. Adaptive query processing: Technology in evolution. IEEE Data Engineering Bulletin, 2000,23(2):7-18.
  • 5Carney D, Cetinternel U, Cherniack M, Convey C, Lee S, Seidman G, Stonebraker M, Tatbul N, Zdonik S. Monitoring streams?A new class of DBMS applications. Technical Report, CS-02-01, Providence: Department of Computer Science, Brown University, 2002.
  • 6Guha S, Mishra N, Motwani R, O'Callaghan L. Clustering data streams. In: Blum A, ed. The 41st Annual Symp. on Foundations of Computer Science, FOCS 2000. Redondo Beach: IEEE Computer Society, 2000. 359-366.
  • 7Domingos P, Hulten G. Mining high-speed data streams. In: Ramakrishnan R, Stolfo S, Pregibon D, eds. Proc. of the 6th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. Boston: ACM Press, 2000. 71-80.
  • 8Domingos P, Hulten G, Spencer L. Mining time-changing data streams. In: Provost F, Srikant R, eds. Proc. of the 7th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. San Francisco: ACM Press, 2001. 97~106.
  • 9Zhou A, Cai Z, Wei L, Qian W. M-Kernel merging: Towards density estimation over data streams. In: Cha SK, Yoshikawa M, eds. The 8th Int'l Conf. on Database Systems for Advanced Applications (DASFAA 2003). Kyoto: IEEE Computer Society, 2003. 285~292.
  • 10Gibbons PB, Matias Y. Synopsis data structures for massive data sets. In: Tarjan RE, Warnow T, eds. Proc. of the 10th Annual ACM-SIAM Symp. on Discrete Algorithms. Baltimore: ACM/SIAM, 1999. 909-910.

共引文献160

同被引文献181

引证文献17

二级引证文献115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部