期刊文献+

基于集成神经网络的智能决策入侵检测系统 被引量:1

Intrusion Detection System Combining Misuse and Anomaly Based on Neural Network Ensemble
下载PDF
导出
摘要 针对传统入侵检测系统存在误报率、漏检率较高的问题,提出了一种将误用入侵检测和异常入侵检测相结合的智能决策入侵检测系统,该系统基于集成神经网络技术,通过D-S证据理论可以将两种技术很好地结合起来,提高入侵检测系统的效率。阐述了该入侵检测系统的总体结构部署以及各组成模块的相应结构设计。 Traditional intrusion detection systems always have such problems as distortion and leakage. To solve these problems, this paper puts forward a new intrusion detection system which could combine misuse detection and anomaly detection. The system is based on neural network ensemble and it uses D-S evidence theory to combine the two intrusion detection technologies. The paper also expatiates on the main structure of the intrusion detection system and the composing module designation.
出处 《计算机系统应用》 2010年第5期113-115,共3页 Computer Systems & Applications
关键词 入侵检测系统 神经网络 误用 异常 D—S证据理论 intrusion detection system neural network misuse anomaly D-S evidence theory
  • 相关文献

参考文献4

二级参考文献27

  • 1周晔,杨天奇.一种基于置信度的异常检测模型与设计[J].计算机仿真,2005,22(1):167-169. 被引量:6
  • 2许劲松,覃俊.一种基于支持向量机的入侵检测模型[J].计算机仿真,2005,22(5):43-45. 被引量:5
  • 3田大新,刘衍珩,魏达.ARTNIDS:基于自适应谐振理论的网络入侵检测系统[J].计算机学报,2005,28(11):1882-1889. 被引量:8
  • 4Tan K,Intrusion Detection Systems and a View to Its Forensic Application
  • 5HaganMT DemuthHB BealeMH 戴葵 宋辉 潭明峰 等译.神经网络设计[M].北京:机械工业出版社,2002..
  • 6HAGAN M T,MENHAJ M.Training feedforward network with the Marquardt algorithm[J].IEEE Tansaction on Neural Networks,1994,5(6):48-58.
  • 7KAYACIK H G.On the capability of an SOM based intrusion detection system[A].Proceedings of IEEE International Conference on Neural Networks[C].New York:IEEE Press,2003.1808-1813.
  • 8De D E nning.An Intrusion Detection Model[ J ].IEEE Trans on Software Engineering,1987,13(2):222 -232.
  • 9Robert E Schapire.The boosting approach to machine learning:An overview[ M ].In MSRI Workshop on Nonlinear Estimation and Classification,2002.
  • 10L K Hansen and P Salamon.Neural network ensembles[ J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,(12):993-1001.

共引文献76

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部