期刊文献+

光子映射在CUDA中的研究与实现 被引量:1

Research and Implementation of Photon Mapping in CUDA
下载PDF
导出
摘要 通过修改光子映射算法的实现过程,使得该算法能够通过CUDA完全运行在最新的GPU上,从而能够充分利用GPU强大的并行计算能力,加速光子映射的实现。光子映射在CUDA中的实现主要通过两个方面来完成:构建光子图和估计辐射能。同时为了提高对光子图中的光子信息的查找速度,采用了kd-tree结构来存储光子信息,使得可以通过KNN(K-Nearest Neighbor)快速搜索光子图。在所测试环境中,渲染速度是CPU中的近10倍。 This paper makes photon mapping algorithm capable of entirely running on latest GPUs by modifying its process in CUDA and harnesses the massive parallel computing power of GPU to accelerate the implementation of photon mapping. The implementation of photon mapping in CUDA includes the construction of the photon maps and estimation of the radiance. To accelerate the search of photons in photon map, this paper uses kd-tree to store photons and search them by KNN. The rendering speed is nearly 10 times by CPU under the test environment.
出处 《计算机系统应用》 2010年第5期174-178,共5页 Computer Systems & Applications
基金 浙江省科技计划面上项目(2008C24014)
关键词 光子映射 GPU 光子图 KD-TREE KNN photon mapping GPU photon map kd-tree KNN
  • 相关文献

参考文献9

  • 1Jensen HW.Global Illumination using Photon Maps.Rendering Techniques'96.Eds.X.Pueyo and P.Schroder.1996.
  • 2Zhou K,Hou QM,Wang R,Guo BN.Real-Time KD-Tree Construction on Graphics Hardware.SIGGRAPH Asia 2008.
  • 3Szabolcs Czuczor,Laszlo Szirmay-Kalos,Laszlo Szecsi and Laszlo Neumann.Photon Map Gathering on the GPU.EUROGRAPHICS 2005.
  • 4NVIDIA Inc.NVIDIA计算统一设备架构编程指南.NVIDIA官方网站.USA2008.
  • 5Purcell TJ,Donner C,Cammarano M,Jensen HW,Hanrahan P.Photon Mapping on Programmable Graphics Hardware.Graphics Hardware (2003).
  • 6Popov S,Gtinther J,Seidel HP,Slusallek P.Stackless KD-Tree Traversal for High Performance GPU Ray Tracing.EUROGRAPHICS 2007.
  • 7Jensen HW.Realistic Image Synthesis Using Photon Mapping.ISBN:1-56881-140-7.AK Peters,July 2001.
  • 8Fabianowsld B,Dingliana J.Interactive Global Photon Mapping.Eurographics Symposium on Rendering 2009.
  • 9Yu TF,Lowther J,Shene CK.Photon Mapping Made Easy.Technical Symposium on Computer Science Education.USA 2005.

同被引文献11

  • 1HAVRAN V. Heuristic ray shooting algorithms [D]. Prague: Czech Technical University in Prague, 2000.
  • 2SANDERS J, KANDROT E. CUDA by example: An introduction to general-purpose GPU programming [ M]. Boston: Addison-Wesley, 2010:1-312.
  • 3PADRONE J, AMOR M, BOO M, et al. High performance global illumination on multi-core architectures [ C]// Proceedings of the17th Euromicm International Conference on Parallel Distributed and Network-based Processing. Washington, DC: IEEE Computer Socie- ty, 2009:93-100.
  • 4WANG RIWEI, ZHANG HUA, DENG YUEFAN, et al. Efficient parallel radiosity for terascale applications [ C]//2008 International Conference on Computer Science and Software Engineering. Wash- ington, DC: IEEE Computer Society, 2008:1074-1077.
  • 5BUDGE B C, ANDERSON J C, GARTH C, et al. A straightforward CUDA implementation for interactive ray-tracing [ C]// IEEE Sym- posium on Parallel and Distributed Processing. Piscataway: IEEE, 2008:178 - 178.
  • 6FABIANOWSKI B, DINGLIANA J. Interactive global photon map- ping [ J]. Computer Graphics Forum, 2009, 28(4) : 1151 - 1159.
  • 7NVidia Inc. NVIDIA CUDA C programming guide [EB/OL]. [2011 - 10 -20]. http://developer, download, nvidia, com/com- pute/DevZone/docs/html/C/doc/CUDA_ C _ Programming _ Guide. pdf.
  • 8陈皓,罗月童,刘晓平.基于MPI的光子映射算法并行化[C]//全国第18届计算机技术与应用(CACIS)学术会议论文集.合肥:中国科技大学出版社,2007:1-4.
  • 9CZUCZOR S, SZIRMAY-KALOS L, SZECSI L, et al. Photon map gathering on the GPU [ C]//EUROGRAPHICS Symposium on Ren- dering. Oliver Deussen: [s.n.], 2005:1-4.
  • 10ZHOU KUN, HOU QIMING, WANG RUI, et al. Real-time KD- tree construction on graphics hardware [ J]. ACM Transactions on Graphics, 2008, 27(5): 1-11.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部