期刊文献+

基于先验知识的多类CVM航班延误预警模型 被引量:3

Prior knowledge based multi-class core vector machine for flight delay early warning
下载PDF
导出
摘要 基于使用现有的支持向量机解决机场航班延误预警问题存在未充分利用先验知识和训练需花费大量时间和空间的问题,提出了基于中心约束最小闭包球的加权多类算法。该算法首先利用先验知识确定一种新的基于相对紧密度的方法计算样本权值并将其融合到支持向量机中,然后转化为中心约束的最小闭包球进行训练。实验结果表明,该方法比现有的支持向量机具有更合理的分类面并且训练速度得到大大提高。 The early warning of airport runtime flight delay is a multi-class classification problem.There are two issues when solving this problem using the normal Support Vector Machine(SVM).The first issue is that the prior knowledge is not adequately utilized,and the second issue is intensive time and space consumption for data training.A new algorithm,which is called as center-constrained Minimum Enclosing Ball(MEB)based weighted margin multi-class algorithm is proposed.First,the proposed algorithm uses the prior knowledge to build a new methodology which is based on a new relative affinity function.Then this new methodology is used to calculate the weights of the sample data and add them to the SVM.After adding these features,the SVM is converted to a center-constrained MEB and can be trained easily.Experiments show that the proposed algorithm not only gives more reasonable classification results comparing to normal SVM,but also obviously speeds up the data training processing.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2010年第3期752-757,共6页 Journal of Jilin University:Engineering and Technology Edition
基金 '863'国家高技术研究发展计划项目(2006AA12A106)
关键词 人工智能 航班延误 支持向量机 最小闭包球 先验知识 artificial intelligence fight delay support vector machine minimum enclosing ball prior knowledge
  • 相关文献

参考文献13

  • 1Vapnik V N. The Nature of Statistical Learning Theory[M].2nd Ed. New York:Springer, 2000.
  • 2Wu X, Srihari R. Incorporating prior knowledge with weighted margin support vector machines [C]// In the 10th ACM SIGKDD International Confer ence on Knowledge, 2004 : 326-333.
  • 3Fabien L, Gerard B. Incorporating prior knowledge in support vector machine for classification: A review [J]. Neurocomputing, 2008,71 (7-9) : 1578-1594 .
  • 4Scholkopf, Simard P, Smola A, et al. Prior knowledge in support vector kernels[C]//In Kernel Methods-support Vector Learning, MA, USA: MIT Press, 1998: 640-646.
  • 5Fung G, Mangasarian O L, Shavlik J. Knowledge- based support vector machine classifiers[R]. In Data Mining Institute Technical Report 01-09,2001.
  • 6Platt J C. Fast training of support vector machines using sequential minimal optimization[C]//In kernel Methods-support Vector Learning, Cambridge, MA,USA: MIT Press, 1999:185-208.
  • 7Collobert R, Bengio S,Bengio Y. A parallel mixture of SVMs for very large scale problems[J]. Neural Computation, 2002, 14: 1105-1114.
  • 8Tsang I W, Kwok J T, Cheung P M. Core vector machines: Fast SVM training on very large data sets [J].Journal of Machine Learning Research, 2005, 6: 363-392.
  • 9Tsang I W, Kwok J T, Lai K T. Core vector regression for very large regression problems[C]// In the Twenty-Second International Conference on Machine Learning,2005 : 913-920.
  • 10Asharaf S, Murty M N, Shevade S K. Multiclass core vector machine[C] //In the 24th International Conference on Machine Learning, ACM, 2007:41 - 48.

同被引文献37

  • 1王来军,史忠科,荣群山.空中交通管理中的地面等待策略研究[J].数学的实践与认识,2004,34(11):39-46. 被引量:4
  • 2万莉莉,胡明华.管制员工作负荷及扇区容量评估问题研究[J].交通运输工程与信息学报,2006,4(2):70-75. 被引量:33
  • 3彭莉娟,吴鹍,余静.机场跑道最大容量评估模型的研究[J].四川大学学报(自然科学版),2006,43(5):1018-1022. 被引量:27
  • 4GILBO E P. Optimizing airport capacity utilization in air traffic flow management subject to constraints at arrival and departure fixes[J]. IEEE Transactions on Control Systems Technology, 1997, 5(5): 490-503.
  • 5KROZEL J, CAPOZZI B, ANDRE A D, et al. The future national airspace system: design requirements imposed by weather constraints[C]//AIAA. Proceedings of AIAA Guidance, Navigation and Control Conference. Austin.. AIAA, 2003: 1-14.
  • 6MUELLER E R, CHATTERJI G B. Analysis of aircraft arrival and departure delay characteristics[C]//AIAA. Proceedings of AIAA's Aircraft Technology, Integration and Operations. Los Angeles: AIAA, 2002: 1-14.
  • 7KROZEL J, HOFFMAN B, PENNY S, et al. Selection of datasets for NAS-wide simulation validations[R]. Herndon: Metron Aviation, 2002.
  • 8KROZEL J, HOFFEMAN B, PENNY S, et al. Aggregate statistics of the national airspace system[C]//AIAA. Proceedings of AIAA Guidance, Navigation, and Control Conference. Austin: AIAA, 2003: 15-29.
  • 9CALLAHAM M B, DEARMON J S, COOPER A M, et al. Assessing NAS performance: normalizing for the effects of weather[C] //FAA, Eurocontrol. Proceedings of the 4th USA/Europe Air Traffic Management R&D Seminars. Santa Fe: FAA, Eurocontrol, 2001: 1-11.
  • 10CHATTERJI G B, SRIDHAR B. National airspace system delay estimation using weather weighted traffic counts [C]//AIAA. AIAA Guidance, Navigation and Control Conference Exhibit. San Francisco: AIAA, 2005: 1-17.

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部