期刊文献+

Heisenberg群上p-sub-Laplace算子的一类Hardy型不等式及其应用 被引量:1

Hardy Type Inequalities and Applications for p-Sub-Laplace Operator on the Heisenberg Group
下载PDF
导出
摘要 利用正则化及逼近的方法,获得了Heisenberg群上p-sub-Laplace算子的一类强Hardy不等式,推广了已有文献中p的取值范围,并进一步弥补了去除原点的缺陷.作为应用,讨论了与该算子相关的一类非线性算子的正定性与下无界性,并给出了它的一个正解. Using regularization method and the approximating method to p-sub-Laplace operator on the- Heisenberg group, one gets the conclusion of sharp Hardy inequality for the operator. The results improve the range of the p and remedy a defect that eliminate the zero point in the existed results. As applications, one discusses the positive property and the unbounded property from below for p-degenerate subelliptic operator and characterize a positive solutions of the nonlinear operator constructed by p-sub-Laplace operator on theHeisenberg group.
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第2期72-75,共4页 Journal of Southwest China Normal University(Natural Science Edition)
基金 浙江省自然科学基金资助项目(Y606144)
关键词 Heisenberg梯度 p-sub-Laplace算子 向量场 正则化 HARDY型不等式 Heisenberg gradient p-sub-Laplace operators vector fields regularization Hardy type inequality
  • 相关文献

参考文献2

二级参考文献12

  • 1丁凌,唐春雷.具有Hardy-Sobolev临界指数的p-Laplacian方程解的存在性和多重性(英文)[J].西南大学学报(自然科学版),2007,29(4):5-10. 被引量:12
  • 2Ferrero A, Gazzola F. Existence of solutions for singular critical growth semi-linear elliptic equations[J]. J Differential Equations, 2001,177(2) : 494-522.
  • 3Garcia Azorero J P, Peral Alonso I. Hardy inequalities and some critical elliptic and parabolic problems[J]. J Differential Equations, 1998,144(2) : 441-476.
  • 4Ghoussoub N, Yuan C. Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents[J]. Trans Arner Math Soc, 2000,352(12):5703-5743.
  • 5Chen J Q. Multiple positive solutions, for a class of nonlinear elliptic equations[J]. J Math Anal Appl, 2004. 295 (2) : 341-354.
  • 6Ding L, Tang C L. Existence and multiplicity of semilinear ellipticequations involving Hardy term and HardySobolev critical exponents[J]. Appl Math Lett, 2007. (20) : 1175-1183.
  • 7Mawhin J, Willem M. Critical point theory and Hamiltonian systems[M]. New York: Springer, 1989.
  • 8Shang Yanying,Tang Chunlei.Positive Solutions for Neumann Elliptic Problems Involving Critical Hardy-Sobolev Expo-nent with Boundary Singularities[].Nonlinear Analysis.2009
  • 9Garcia-Azorero J,Peral I,Rossi J D.A Convex-Concave Problem with a Nonlinear Boundary Condition[].J Differenti-al Equations.2004
  • 10Ding L,Tang C L.Existence and Multiplicity of Positive Solutions for a Class of Semilinear Elliptic Equations InvolvingHardy Eermand Hardy-Sobolev Critical Exponents[].Journal of Mathematical Analysis and Applications.2007

共引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部