期刊文献+

矩阵乘积的Schur余的奇异值估计 被引量:4

下载PDF
导出
摘要 本文得到了矩阵乘积的Schur余的奇异值的一些不等式,改进了近期的一些结果.
出处 《数学年刊(A辑)》 CSCD 北大核心 1998年第3期285-288,共4页 Chinese Annals of Mathematics
基金 湖南省自然科学基金
  • 相关文献

参考文献3

二级参考文献5

共引文献21

同被引文献16

  • 1程代展.Semi-tensor product of matrices and its application to Morgen's problem[J].Science in China(Series F),2001,44(3):195-212. 被引量:53
  • 2CHENG Daizhan Some applications of semitensor product of matrices in algebra[J]. Computers & Mathematics with Applications,2006,52(6-7) : 1045-1066.
  • 3WAGN Boying,XI Boyan, ZHANG Fuzhen. Some inequalities for sum and product of positive semidefinite matrices [J]. Linear Algebra and Its Applications, 1999,293(1-3) :39-49.
  • 4LIU Jianzhou. Some inequalities for singular values and eigenvalues of generalized Schur complements of products of matrices[J]. Linear Algebra and Its Applications, 1999,286 (1-3) : 209-221.
  • 5TAO Yunxing. More results on singular value inequalities of matrices[J]. Linear Algebra and Its Applications,2006,416(2-3) :724-729.
  • 6MARSHALL A W,OLKIN I. Inequalities: Theory of Majorization and Its Applieations[M]. New York: Academic Press, 1979.
  • 7WANG Boying, GONG Mingpeng. Some eigenvalue inequalities for positive semidefinite matrix power products[J]. Linear Algebra and Its Applications, 1993,184:249-260.
  • 8Ando T. Concavity of Certain Maps on Positive Definite Matrices and Applications to Hadamard Products[J]. Linear Algebra and its Applications, 1979, 26:203-241.
  • 9Wang B Y and Zang F Z. Schur Complements and Matrix Inequalities of Hadamard Products[J].Linear and Multilinear Algebra, 1997, 43: 315-326.
  • 10Wang B Y, Zhang X P and Zhang F Z. Some Inequalities on Generalized Sghur Complements[J].Linear Algebra and its Applications, 1999, 302-303: 163-172.

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部