期刊文献+

An efficient method of distinguishing chaos from noise 被引量:1

An efficient method of distinguishing chaos from noise
下载PDF
导出
摘要 It is an important problem in chaos theory whether an observed irregular signal is deterministic chaotic or stochas- tic. We propose an efficient method for distinguishing deterministic chaotic from stochastic time series for short scalar time series. We first investigate, with the increase of the embedding dimension, the changing trend of the distance between two points which stay close in phase space. And then, we obtain the differences between Gaussian white noise and deterministic chaotic time series underlying this method. Finally, numerical experiments are presented to testify the validity and robustness of the method. Simulation results indicate that our method can distinguish deterministic chaotic from stochastic time series effectively even when the data are short and contaminated. It is an important problem in chaos theory whether an observed irregular signal is deterministic chaotic or stochas- tic. We propose an efficient method for distinguishing deterministic chaotic from stochastic time series for short scalar time series. We first investigate, with the increase of the embedding dimension, the changing trend of the distance between two points which stay close in phase space. And then, we obtain the differences between Gaussian white noise and deterministic chaotic time series underlying this method. Finally, numerical experiments are presented to testify the validity and robustness of the method. Simulation results indicate that our method can distinguish deterministic chaotic from stochastic time series effectively even when the data are short and contaminated.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第5期98-103,共6页 中国物理B(英文版)
关键词 phase space reconstruction average false nearest neighbour chaos detection phase space reconstruction, average false nearest neighbour, chaos detection
  • 相关文献

参考文献42

  • 1Nicolis C and Nicolis G 1984 Nature 311 529.
  • 2Cencini M, Falcioni M, Olbrich E, Kantz H and Vulpiani A 2000 Phys. Rev. E 62 427.
  • 3Osborne A R and Provenzale A 1989 Physiea D 35 357.
  • 4Kaplan D T and Glass L 1992 Phys. Rev. Lett. 68 427.
  • 5Kantz H and Schreiber T 2004 Nonlinear Time Series Analysis (Cambridge: Cambridge University).
  • 6Grassberger P and Procaccia I 1983 Phys. Rev. Lett. 50 346.
  • 7Grassberger P and Procaccia I 1983 Physica D 9 189.
  • 8Sano M and Sawada Y 1985 Phys. Rev. Lett. 55 1082.
  • 9Wolf A, Swifta J, Swinneya H and Vastanoa J 1985 Physica D 16 285.
  • 10Rosensteina M. Collinsa J and Luca C D 1993 Physica D 65 117.

同被引文献12

  • 1刘嘉兴.飞行器测控与信息传输技术[M].北京:国防工业出版社,2011.
  • 2Pecora L M, Carroll T L. Synchronization in chaotic systems [J]. Physical Review Letters, 1990,64(8) :821 - 824.
  • 3Parlitz U, Ergezinger S. Robust commtmication based on chaotic spreading sequences[J]. Physics Letters A, 1994,188 (2) : 146 - 150.
  • 4Stavroulakis P. Chaos applications in tel [M]. Boca Raton:CRC Press, 2006.
  • 5Wei H D, LI L P. An Efficient Method for Detecting Chaot- ic Spread Spectrum Sequences [ C ]//Proceedings of 2010. Second International Conference on Computer Modeling and Simulation. Sanya: IEEE, 2010: 244 - 248.
  • 6Kantz H, Sehreiber T. Nonlinear time series analysis[ M]. 2nd ed. London: Cambridge University Press,2004.
  • 7Pikovsky A, Rosenblum M, Kurths J. Synchronization: a u- niversal concept in nonlinear sciences[M]. London: Cam- bridge University Press, 2001.
  • 8Parlitz U. Estimating Model Parameters from Time Series by Autosynehronization[ J]. Physical Review Letters, 1996,76 (8) : 1232 - 1235.
  • 9Yu D, Wu A. Comment on "Estimating Model Parameters from Time Series by Autosynchronization" [J]. Physical Re- view Letters, 2005, 94(21): 219401.
  • 10刘嘉兴,文吉.Ka频段混沌扩频测控系统的设想[J].电讯技术,2009,49(5):33-37. 被引量:12

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部