摘要
文章在映射为全连续场和伪单调的情况下,运用拓扑度的同伦不变性,切除性等性质,证明了在Hilbret空间中变分不等式解的非空有界性等价于严格可行性,将已有的结果从有限维欧式空间推广到了无穷维的Hilbret空间中。
This paper proves that solution set of variational inequality being nonempty and bounded is equivalent to the strict feasibility in Hibert spaces. We provide that the mapping is a compact field and pseudo-monotone, and use the homotopy invariance of the topological degree and the excision property of the topological degree. This generalizes some known results from finite dimensional spaces to infinite dimensional spaces.
出处
《四川理工学院学报(自然科学版)》
CAS
2010年第2期144-146,共3页
Journal of Sichuan University of Science & Engineering(Natural Science Edition)
基金
四川理工学院人才引进科研启动项目(07ZR36)
关键词
变分不等式
拓扑度
严格可行性
全连续场
伪单调映射
variational inequality
degree theory
strictly feasible
compact field
pseudo-monotone mapping