期刊文献+

Hilbert空间中伪单调变分不等式的严格可行性 被引量:1

Strict Feasi bility of Pseudo-monotone Variational Inequality in Hilbert Spaces
下载PDF
导出
摘要 文章在映射为全连续场和伪单调的情况下,运用拓扑度的同伦不变性,切除性等性质,证明了在Hilbret空间中变分不等式解的非空有界性等价于严格可行性,将已有的结果从有限维欧式空间推广到了无穷维的Hilbret空间中。 This paper proves that solution set of variational inequality being nonempty and bounded is equivalent to the strict feasibility in Hibert spaces. We provide that the mapping is a compact field and pseudo-monotone, and use the homotopy invariance of the topological degree and the excision property of the topological degree. This generalizes some known results from finite dimensional spaces to infinite dimensional spaces.
作者 刘小兰
出处 《四川理工学院学报(自然科学版)》 CAS 2010年第2期144-146,共3页 Journal of Sichuan University of Science & Engineering(Natural Science Edition)
基金 四川理工学院人才引进科研启动项目(07ZR36)
关键词 变分不等式 拓扑度 严格可行性 全连续场 伪单调映射 variational inequality degree theory strictly feasible compact field pseudo-monotone mapping
  • 相关文献

参考文献17

  • 1Guler O.Existence of interior points and interior paths in nonlinear monotone complementarity problems[J].Maht.Oper.Res.,1993,18(1):128-147.
  • 2Kojima M,Megiddo N,Noma T.Homotopy continuation methods for nonlinear complementarity problems[J].Math.Oper.Res.,1991,16(4):754-774.
  • 3Zhao Yunbin,Isac G.Properties of a multi-valued mapping associated with some nonmonotone complementarity problems[J.]SIAM J.Control Optim.,2000,39(2):571-593.
  • 4Karamardian S.Complementarity problems over cones with monotone and pseudo-monotone maps[J].J.Op-tim.Theory Appl.,1976,18(4):445-454.
  • 5Zhao Yunbin,Isac G.Quasi-P*-maps,P(τ,α,β)-maps,exceptional family of elements,and complementarity problems[J].J.Optim.Theory Appl.,2000,105(1):213-231.
  • 6Ravindran G,Seetharama Gowda M.Regularization of P0-function in box variational inequality problems[J].SIAM J.Optim,2000,11(3):748-760.
  • 7Mc Linden L.Stable monotone variational inequalities[J].Math.Programming,1990,48(2(Ser.B)):303-338.
  • 8Zhao Yunbin,li Duan.Strict feasibility conditions in nonlinear complementarity problems[J].J.Optim.Theory Appl.,2000,107(3):641-664.
  • 9He Yiran.Stable pseudomonotone variational inequality in reflexive Banach spaces[J].J.Math.Anal.Appl.,2007,330:352-363.
  • 10Facchinei F,Pang Jongshi.Finite-dimensional variational inequalities and complementarity problems[M].New York:Springer-Verlag,2003.

同被引文献6

  • 1Fan X L.Solutions for p(x)-Laplacian Dirichlet problem with singular coefficients[J].JMAA.2005,312 (3):464-477.
  • 2Mihailescu M.Existence and multiplicity of solutions for a Neumann problem involving p(x)-Laplacian Laplacian operator[J].NA.2007,67(5):1419-1425.
  • 3Fan X L,Zhao D.On the spaceLp(x)(Ω) and Wm,p(x)(Ω)[J].JMAA,2001,63(2):424-446.
  • 4Fan X L,Shen J S,Zhao D.Sobolev embedding theorems for Spaces Wk,p(x)(Ω)[J].JMAA,2001,62(2):749-760.
  • 5张恭庆.临界点原理及其应用[M].上海:上海科学技术出版社,1986.
  • 6刘越里,陈庆娥,田玉柱.具有无流边界条件的Laplacian算子的特征值[J].天水师范学院学报,2010,30(2):38-40. 被引量:2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部