期刊文献+

乳腺肿瘤超声图像中感兴趣区域的自动检测 被引量:10

Automatic Detection of the Region of Interest from Breast Tumor Ultrasound Images
下载PDF
导出
摘要 由于斑点噪声、伪影以及病灶形状多变的影响,乳腺肿瘤超声图像中肿瘤区域的自动检测以及病灶的边缘提取比较困难,已有的方法主要是由医生先手工提取感兴趣区域(ROI)。本研究提出一种乳腺肿瘤超声图像中感兴趣区域自动检测的方法,选用超声图像的局部纹理、局部灰度共生矩阵以及位置信息作为特征,采用自组织映射神经网络进行分类,自动识别乳腺肿瘤区域。对包含168幅乳腺肿瘤超声图像的数据库进行识别的结果表明:该方法自动识别ROI的准确率达到86.9%,可辅助医生提取肿瘤的实际边缘以及进一步诊断。 Due to the speckle noise,shadowing artifacts and the variance in shape of sonographic lesions,it is difficult to detect breast tumors and extract lesion boundaries from ultrasound images automatically.Previous breast tumor detection methods have been based on the manual extraction of the region of interest(ROI).In this paper,a computer-aided automatic method was proposed to detect the ROI of breast tumors from ultrasound images.A self-organizing map(SOM) neural network was used for the classification of the area of breast tumor.The ROI could be extracted automatically employing the local texture,the local gray level co-occurrence matrix,and positions as features.Experimental results showed that the method could recognize breast tumors in our 168-image database with an accuracy of 86.9%,which may assist physicians to extract the boundary and make further diagnose.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2010年第2期178-184,共7页 Chinese Journal of Biomedical Engineering
基金 国家重点基础研究规划基金项目(2005CB724303) 国家自然科学基金资助项目(10974035) 上海市重点学科建设项目(B112)
关键词 乳腺肿瘤 超声图像 感兴趣区域 自动检测 自组织映射神经网络 breast tumor ultrasound images region of interest(ROI) automatic detection self-organizing map(SOM) neural network
  • 相关文献

参考文献11

  • 1Huang Yulen,Chen Darren.Watershed segmentation for breast tumor in 2-d sonography[J].Ultrasound in Medicine and Biology,2004,30(5):625-632.
  • 2Huang Yulen,Chen Darren.Automatic contouring for breast tumors in 2-D sonography[A].In:Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference[C].Shanghai,2005.3225-3228.
  • 3Chen Darren,Hsiao Yihsuan.Computer-aided diagnosis in breast ultrasound[J].Journal of Ultrasound in Medicine,2008,16(1):46-56.
  • 4Yu Yongjian,Acton ST.Speckle reducing anisotropic diffusion[J].IEEE Transaction on Image Processing,2002,11(11):1260-1270.
  • 5冈萨雷斯.数字图像处理:MATLAB版[M].阮秋琦,译.北京:电子工业出版社,2006.
  • 6Baraldi A,Parmiggiani F.An investigation of the textural characteristic associated with gray level cooccurrence matrix statistical parameters[J].IEEE Transactions on Geoscience and Remote Sensing,1995,33(2):293-304.
  • 7Kohonen T.Self-organization and associative memory[M].New York:Springer-Verlag,1989.
  • 8Kohonen T.Self-organizing maps[M].New York:Springer-Verlag,1997.
  • 9Haralick RM,Shapiro LG.Computer and robot vision[M].Boston:Addison-Wesley,1992:28-48.
  • 10Li Chunming,Kao Chiu-Yen,Gore JC,et al.Minimization of region-scalable fitting energy for image segmentation[J].IEEE Transaction on Image Processing,2008,17(10):1940-1949.

二级参考文献11

  • 1沈嘉琳,汪源源,王涌,王怡.基于灰度阈值分割和动态规划的超声图像乳腺肿瘤边缘提取[J].航天医学与医学工程,2005,18(4):281-286. 被引量:10
  • 2Madabhushi A, Mataxas DN. Combining low-, high- level and empirical domain knowledge for automated segmentation of ultrasonic breast leasions[ J]. Medical Imaging, 2003, 22(2) : 155-169.
  • 3HuangYL, Chen DR. Watershed segmentation for breast tumor in 2-D sonography [ J ]. Ultrasound in Medicine and Biology, 2004, 30(5 ) :625-632.
  • 4Kass M, Witkin A, Terzopoulos D. Snakes: active contour models[J]. Int J ComptVis,1988, 1(4):32 -331.
  • 5Chan T, Vese L. Active contours without edges [ J ]. IEEE Trans Image Processing, 2001, 10( 2 ) :266-277.
  • 6LI Chunming, XU Chenyang, GUI Changfeng, et at. Level set evolution without re-intialization: a new variational formulation [ J]. IEEE Conference on CVPR, 2005, 1 ( 6 ) :430-436.
  • 7Malladi R, Sethian JA, Vemuri BC. Shape modeling with front propagation : a level set approach [ J ]. IEEE Trans PAMI, 1995, 17(5):158-175.
  • 8Osher S, Fedkiw R. Level Set Methods and Dynamic Implicit Surfaces [ M]. Berlin :Springer, 2001:47-54.
  • 9Yu YJ, Acton ST. Speckle reducing anisotropic diffusion [J]. IEEETranslmageProcessing, 2002,11(11):1260- 1270.
  • 10Udupa JK, LeBlanc VR, Schmidt H, et al. A methodology for evaluating image segmentation algorithms [ J ]. Proceedings of SPIE, 2002, 4:684( 1 ) :266-27?.

共引文献4

同被引文献40

  • 1董火明,高隽,汪荣贵.多分类器融合的人脸识别与身份认证[J].系统仿真学报,2004,16(8):1849-1853. 被引量:17
  • 2汪源源,沈嘉琳,王涌,王怡.基于形态特征判别超声图像中乳腺肿瘤的良恶性[J].光学精密工程,2006,14(2):333-340. 被引量:15
  • 3TSANTIS S, DIMITROPOULOS N, CAVOURAS D, NIKIFORIDIS G. A hybrid multi-scale model for thyroid nodule boundary detection on ultrasound images [J]. Computer Methods & Programs in Biomedicine, 2006, 84(2/3): 86-98.
  • 4NOBLE J A, BOUKERROUI D. Ultrasound image segmentation: a survey[J]. IEEE Transactions on Medical Imaging, 2006, 25(8): 987-1010.
  • 5HUANG Yulen. Computer-aided diagnosis using neural networks and support vector machines for breast ultrasonography[JI. Journal of Medical Ultrasound, 2009, 17(1): 17-24.
  • 6CHEN Darren, HSTAO Y. Computer-aided diagnosis in breast ultrasound[J]. Journal of Ultrasound in Medicine, 2008, 16(1): 46-56.
  • 7LIu Bo, CHENG Hengda, HUANG Jianhua, TIAN Jiawei, LIu Jiafeng, TANG Xianglong. Automated segmentation of ultrasonic breast lesions using statistical texture classification and active contour based on probability distanceIJ]. Ultrasound in Medicine & Biology, 2009, 35(8): 1309-1324.
  • 8HUANG Y, CHEN Daxren. Watershed segmentation for breast tumor in 2-d sonography[J]. Ultrasound in Medicine and Biology, 2004, 30(5): 625-632.
  • 9PERONA P, MALIK J. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Transaction on Pattern and Machine Intelligence, 1990, 12(7): 629- 639.
  • 10Yu Yongjian, ACTON S T. Speckle reducing anisotropic diffusion[J]. IEEE Transaction on Image Processing, 2002, 11(11): 1260-1270.

引证文献10

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部