期刊文献+

一种新的心电图测量方法与实现 被引量:1

A new method for measuring electrocardiogram and its implement
下载PDF
导出
摘要 背景:现有心电图测量或者依赖于专业医生,或者依靠不够准确的自动识别方法,难以满足检测速度快、测试结果准确以及便于普通百姓应用等需求。目的:提出一种新的简便易行的心电图测量方法,并探讨其可行性。方法:采用delphi7.0软件开发平台编程实现算法和测试软件,将心电数据图形或心电图图像显示在屏幕上,用鼠标点击或触屏选取心电图上各波的顶点、启始点、终止点以及J点,测试软件根据点击或触屏信息计算出各波的参数,并作出初步诊断。结果与结论:心电图波形深度高度、时间、P-R间期、S-T段、Q-T段、P-P或R-R时间以及心电轴等参数测量准确,心率、心律和心电轴偏转诊断无误。提示该方法简单易学、实施便捷、高效准确快速,可明显改善专业医生的测量分析效率,并满足一般医生甚至普通老百姓的应用要求。 BACKGROUND:The existing electrocardiogram (ECG) measurement strongly depends on medical professionals and inefficient high-intensity,or relies on automatic identification method which is not accurately enough.Thus,this is difficult to meet high-speed testing,accurate results and ease application for common people.OBJECTIVE:To develop a new method that was simple and efficient to apply and very easy to learn.METHODS:Algorithms were programmed and test software was developed by delphi7.0.ECG was drawn on screen.The apex,the starting point and the ending point as well as the J-point of each ECG wave were clicked by mouse or stylus.Then the wave parameters and an initial diagnosis could be quickly obtained by test software.RESULTS AND CONCLUSION:The parameters of ECG waveform such as wave height,wave time,PR interval,ST segment,QT segment,PP/RR time,cardiac electrical axis and so on could be accurately measured,and heart rate,heart rhythm and the deflection of cardiac electrical axis could be diagnosed correctly.The method was simple to learn and easy to imply,and it was also efficient,quick and accurate.Thus,it could greatly improve the efficiency of measurement and analysis for specialists,and could meet application requirements of general medicals and ordinary people.
出处 《中国组织工程研究与临床康复》 CAS CSCD 北大核心 2010年第17期3120-3122,共3页 Journal of Clinical Rehabilitative Tissue Engineering Research
基金 重庆邮电大学自然科学基金(A2007-32)~~
  • 相关文献

参考文献7

二级参考文献17

  • 1吴光弼,祝琳瑜.一种变步长LMS自适应滤波算法[J].电子学报,1994,22(1):55-61. 被引量:35
  • 2I Daubechies.Ten Lectures on Wavelets.CBMS-Conference Lecture Notes[M].SIAM Philadelphia:SIAM V.6,1992.
  • 3G Krishna Prasad,J S Sahambi.Classification of ECG Arrhythmias using Multi-Resolution Analysis and Neural Networks[C]// IEEE TENCON 2003.Bangalore,India,Allied Publishes Pvt Ltd,2003:482-488.
  • 4Clifton D,Addison P S,Stiles M K,et al.Using wavelet transform reassignment techniques for ECG characterisation[J].Computers in Cardiology(S0276-6574),2003,9(1):581-584.
  • 5H H Szu,B Telfer,S Kadambe.Neural network adaptive wavelets for signal representation and classification.[J].Optical Engineer(S91-3286),1992,31(9):1907-1916.
  • 6Angrisani L Daponte,P Dapos Apuzzo,M.Wavelet Network-Based Detection and Classification of Transients.[J].IEEE transactions on Instrumentation and Measurement(S0018-9456),2001,50(5).
  • 7H Dickhaus,H Heinrich.Classifying biosignals with wavelet networks-A method for noninvasive diagnosis[J].IEEE Engineering in Medicine and Biology Magazine(S0739-5175),1996,15(5):103-111.
  • 8F Tuteur.Wavelet transformation in signal detection[C]// 8th IFAC/IFORS Symposium,1998,2:1061-1065.
  • 9Q Zhang,A Benveniste.Wavelet networks[J].IEEE transactions on Neural Networks(S1045-9227),1992,3(6):889-898.
  • 10Rioul O R,Vetterli M.Wavelets and signal processing[J].IEEE Signal Processing Magazine(S1053-5888),1991,8(4):14-38.

共引文献24

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部