期刊文献+

渗透陶瓷双层结构的双轴抗弯强度及断裂模式研究 被引量:2

Bi-axial flexure strength and fracture mode of alumina glass-infiltrated core/veneer ceramic composites
下载PDF
导出
摘要 目的:考察渗透陶瓷与饰面瓷双层结构的双轴抗弯强度及其可靠性和断裂方式,以帮助了解修复体失败的原因。方法:制作1.6mm×16mm盘状试件40个,MC和MV分别为渗透陶瓷和饰面瓷的单层试件,BV和BC为两者的双层试件,采用球-环法测定以上4组的双轴抗弯强度,其中BV组在加载时饰面瓷承受张应力,BC组加载时渗透陶瓷承受张应力。结果用SPSS13.0软件包行单因素方差分析及Weibull分析,体视显微镜及扫描电镜观察确定试件断裂源及断裂模式。结果:MC组强度最高(P<0.001),BC组强度高于BV组(P<0.001),MV组与BV组双轴抗弯强度无统计学差异(P=0.381)。Weibull模量主要受承受张应力一侧的材料影响,BC组与BV组都未发生明显的界面剥离。结论:加载时,承受张应力的材料决定双层试件的双轴抗弯强度和断裂模式。强度较差的饰面瓷会影响全瓷修复体的强度。 PURPOSE:To determine the bi-axial flexural strength and fracture mode of bilayered alumina glass-infiltrated core and the veneering porcelain. METHODS:Forty disk specimens were made from alumina glass-infiltrated core (HSDC-A) and veneer porcelain (Vintage AL),and equally divided into four groups as follows:monolithic specimens of veneer (MV),monolithic specimens of core material (MC),bilayered specimens with the veneer on top (BC) and bilayered specimens with core material on top(BV). Mean flexure strength,standard deviation and associated Weibull modulus were determined using bi-axial flexure (ball-on-ring) for each group. The results were analyzed with one-way ANOVA and the Weibull distribution with SPSS 13.0 software package. Both optical and scanning electron microscopy were employed for identification of the fracture mode and origin. RESULTS:The strength in the group MC and BC were significantly stronger than that in the group MV and BV. The frequency of specimen delamination,Hertzian cone formation and subcritical radial cracking in the bilayered discs were dependent on the surface loaded in tension. CONCLUSION:Material which lies on the bottom surface dictates the strength and fracture mode of the specimens.
出处 《上海口腔医学》 CAS CSCD 2010年第2期192-195,共4页 Shanghai Journal of Stomatology
基金 2009深圳市科技计划项目(200903082)~~
关键词 双轴抗弯强度 Weibull模量 牙科陶瓷 断口形貌 Bi-axial flexure strength Weibull modulus Dental ceramic Fractography
  • 相关文献

参考文献16

  • 1Fischer H, Weber M, MarxR. Life time prediction of all ceramic bridges by computational methods [J]. J Dent Res, 2003, 82(3): 238-242.
  • 2韩晓莉,廖运茂,巢永烈,孟玉坤.GI-Ⅱ型着色玻璃渗透后渗透陶瓷的性能测试[J].华西口腔医学杂志,2002,20(5):364-366. 被引量:7
  • 3Wagner WC, Chu TM. Biaxial flexural strength and indentation fracture toughness of three new dental core ceramics [J]. J Prosthet Dent, 1996, 76(2):140-144.
  • 4DeLong R, Douglas WH. Development of an artificial oral environment for the testing of dental restoratives: bi-axial force and movement control [J]. J Dent Res, 1983, 62(1): 32-36.
  • 5Piddock V, Marquis PM, Wilson HJ. The mechanical strength and microstructure of all-ceramic crowns[J]. J Dent, 1987, 15(4): 153- 158.
  • 6Kelly JR, Campbell SD, Bowen HK. Fracture-surface analysis of dental ceramics [J]. J Prosthet Dent, 1989, 62(1): 536-541.
  • 7International Organization for Standardization.Dental ceramics[S]. 2nd Ed. ISO: 1999. ISO 6872.
  • 8Fleming GJ, El-Lakwah SF, Harris JJ, et al. The effect of core: dentin thickness ratio on the bi-axial flexure strength and fracture mode and origin of bilayered dental ceramic composites [J].Dent Mater, 2005, 21(2): 164-171.
  • 9Kelly JR. Perspectives on strength [J]. Dent Mater, 1995, 11 (2): 103-110.
  • 10Qasim T, Bush MB, Hu X, et al. Contact damage in brittle coating layers: influence of surface curvature[J]. J Biomed Mater Res, Part B, 2005, 73(1):179-185.

二级参考文献2

共引文献6

同被引文献13

  • 1Rocha EP, Anehieta RB, Freitas AC Jr, et al. Mechanical behavior of ceramic veneer in zireonia-based restorations: a 3- dimensional finite element analysis using micrncnmputed tomography data [J]. J Prosthet Dent, 2011, 105(1): 14-20.
  • 2Josephson BA, Schulman A, Dunn ZA, et al. A compressive strength study of an all-ceramic crown [J]. J Prosthet Dent, 1985, 53(3): 301-303.
  • 3Fleming GJ, Dickens M, Thomas I,l, et al. The in vitro failure of all-ceramic crowns and the connector area of fixed partial dentures using bilayered ceramic specimens: the influence of core to dentin thickness ratio [J]. Dent Mater, 2006, 22(8): 771-777.
  • 4Shirakura A, Lee H, Geminiani A, et al. The influence of veneering porcelain thickness of all-ceramic and metal ceramic crowns on failure resistance after cyclic loading [J]. J Prosthet Dent, 2009, 101(2): 119-127.
  • 5Coelho PG, Bonfante EA, Silva NR, et al. Laboratory simulation of Y-TZP all-ceramic crown clinical failures [J]. J Dent Res, 2009, 88(4): 382-386.
  • 6Pallis K, Griggs JA, Woody RD, et al. Fracture resistance of threeall-ceramic restorative systems for posterior applications [J]. J Prosthet Dent, 2004, 91(6): 561-569.
  • 7Fleming GJ, E1-Lakwah SF, Harris JJ, et al. The effect of core: dentin thickness ratio on the bi-axial flexure strength and fracture mode and origin of bilayered dental ceramic composites [J]. Dent Mater, 2005, 21(2): 164-171.
  • 8Lawna BR, Pajaresa A, Zhang Y, et al. Materials design in the performance of all-ceramic crowns[J]. Biomaterials, 2004, 25(14): 2885-2892.
  • 9Wang Y, Darrell BW. Failure mode of dental restorative materials under Hertzian indentation [J]. Dental Mater,2007,23(10): 1236- 1244.
  • 10崔军,刘学恒,马练,巢永烈,贾黎.渗透陶瓷与松风AL饰面瓷的热匹配性研究[J].口腔材料器械杂志,2008,17(1):8-9. 被引量:7

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部