期刊文献+

遗传神经网络在风电场风速估计中的应用 被引量:2

Wind Speed Forecasting Using Genetic Neural Model
下载PDF
导出
摘要 风速的波动会影响风电场发电量的随机变化,对风速比较准确的估计可用于提高风力发电控制系统的性能。但由于风速的随机性和非线性,用常规的方法难以预测。将时间序列分析法、神经网络及遗传算法相结合,提出一种预测风速的建模方法。采用时序分析法确定网络输入变量数,用遗传算法动态调整BP网络的连接权值和阈值的方法来逼近和学习风速的非线性。实验结果表明,该模型性能良好,能有效跟踪风速和风力机发电功率的变化趋势,具有良好的估计精度。 Considering the stochastic behaviour of wind speed, a predication model is established which based on time series analytic approach, genetic algorithm and neural network, The number of input variable in this network is decided by the time series analytic approach. The predicted values agree well with the data which measured in a wind farm. The experiment results showed that the proposed method is a valid, and is useful tool for wind speed and wind turbine power predication.
出处 《现代科学仪器》 2009年第6期48-52,共5页 Modern Scientific Instruments
关键词 人工神经网络 遗传算法 风速预测 时间序列 风力发电机功率 Neural network Genetic algorithm Wind speed forecasting Time series Wind turbine power
  • 相关文献

参考文献7

二级参考文献49

共引文献296

同被引文献19

  • 1袁铁江,晁勤,李建林.风电并网技术[M].北京:机械工业出版社,2012.
  • 2卢季宁.新型爬山算法在永磁直驱式风力发电系统中的运用[D].硕士学位论文.
  • 3Yuanye Xia,Khaled H.Ahmed,and Barry W.Williams,A New Maximum Power Point Tracking Technique for Permanent Magnet Synchronous Generator Based Wind Energy Conversion System,IEEE TRANSACTIONS ON POWER ELECTRONICS,VOL.26,NO.12,DECEMBER 2011.
  • 4Y.Errami,M.Ouassaid,Modelling and control strategy of PMSG based variable speed wind energy conversion systemiC].
  • 5Troen I, Petersen E L. European wind atlas [M]. Roskilde. Riso National Laboratory, 1989.
  • 6Damousis I G, Dokopoulos P. A fuzzy expert system for the forecasting of wind speed and power generation in wind farms [C]. IEEE Power Industry Computer Applications Conference, 2001.
  • 7Bernhard L, Kurt R, Bernhard E, et al. Wind power prediction in and future challenges Conference, Athens, Germany-recent advances [C]. European Wind Energy 2006.
  • 8Huang N E, Shen Z, Long S R. The empirical mode decomposition and the Hilbert spectrum or nonlinear and non-stationary time series analysis [J]. Proceedings of the Royal Society SocLond, 1998, 454 (1971) . 903-995.
  • 9Vapnik V. The nature of statistical learning theory [M]. New York: Springer-Verlag, 1995.
  • 10Cortes C, Vapnik V. Support vector networks [J]. Machine Learning, 1995 (20) : 273-297.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部