期刊文献+

弹性浅拱的非线性动力屈曲 被引量:11

Nonlinear Dynamic Buckling of Shallow Elastic Arch
下载PDF
导出
摘要 采用非线性动力学方法探索了跌落冲击弹性浅拱的动力跳跃屈曲问题.由哈密顿原理得到结构的非线性动力平衡方程,同时采用单模态和双模态两种模态形式进行分析,并通过伽辽金方法得到结构响应的控制方程.文中讨论了系统平衡点的特性,研究了系统的吸引子及其吸引域等稳定性问题.数值结果表明:双模态分析法较单模态分析法精确;在某些情况下,单模态分析无法给出正确的屈曲临界条件和系统动力响应.另外,拱的初始位形变化对跳跃屈曲的临界条件影响显著,高拱具有更高的屈曲承载力. This paper deals with the snap-through buckling of a shallow elastic arch under dropping impacts by means of the nonlinear dynamic method. In the investigation, a nonlinear dynamic equilibrium equation is deduced based on the Hamilton principle and is then analyzed using both the single-mode and the double-mode methods. Then, the governing equation of structure responses is obtained via Galerkin's approach. Moreover, the charactcristics of equilibrium points of the system are discussed and the stability of system attracters and their attraction domains is analyzed. Numerical results show that the double-mode method is more accurate than the single-mode one. The single-mode method may give incorrect critical buckling conditions and dynamic responses in some conditions. In addition, the initial shape of the shallow arch greatly affects the critical conditions of snap-through buckling, and that higher arch may possess greater buckling bearing capacity.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第3期1-7,共7页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(10672059) 广东省自然科学基金资助项目(8151064101000002)
关键词 非线性动力学 动力屈曲 跳跃屈曲 浅拱 nonlinear dynamics dynamic buckling snap-through buckling shallow arch
  • 相关文献

参考文献10

  • 1Xu J X,Huang H,Zhang P Z,et al.Dynamic stability of shallow arch with elastic supports-application in the dynamic stability analysis of inner winding of transformer during short circuit[J].International Journal of Non-Li-near Mechanics,2002,37(4):909-920.
  • 2Lin J S,Chen J S.Dynamic snap-through of a laterally loaded arch under prescribed end motion[J].International Journal of Solids and Structures,2003,40(18):4769-4787.
  • 3Chen J S,Lin J S.Dynamic snap-through of a shallow arch under a moving point load[J].Journal of Vibration and Acoustics,2004,126(4):514-519.
  • 4Chen J S,Li Y T.Effects of elastic foundation on the snap-through buckling of a shallow arch under a moving point load[J].International Journal of Solids and Structures,2006,43(14):4220-4237.
  • 5Johnson E R,Mclvor I K.The effect of spatial distribution on dynamic snap-through[J].Journal of Applied Mechanics,1978,45:612-618.
  • 6Johnson E R.The effect of damping on dynamic snap-through[J].Journal of Applied Mechanics,1980,47(3):601-606.
  • 7Rossi R E,Laura P A A.Numerical experiments on dynamic stiffening of a circular arch executing in-plane vibrations[J].Journal of Sound and Vibration,1995,187(5):897-909.
  • 8卫星,李俊,李小珍,强士中.考虑二阶效应的拱结构面内弹性屈曲[J].工程力学,2007,24(1):147-152. 被引量:16
  • 9Chen J S,Liao C Y.Experiment and analysis on the free dynamics of a shallow arch after an impact load at the end[J].Journal of Applied Mechanics,2005,72(1):54-61.
  • 10张家忠,陈丽莺,梅冠华,周志宏,苏哲.基于时滞惯性流形的浅拱动力屈曲研究[J].振动与冲击,2009,28(6):100-103. 被引量:7

二级参考文献10

  • 1张家忠,刘雁,陈党民.二阶耗散动力系统的降维对解长期行为的误差估计[J].应用数学和力学,2005,26(7):861-866. 被引量:5
  • 2Philip R Calhoun,Donald A DaDeppo.Nonlinear finite element analysis of clamped arches[J].J.Struct.Engrg.,1983,109(3):599~612.
  • 3Chen Chang-New.A finite element study on bifurcation and limit point buckling of elastic-plastic arches[J].Computer & Structure,1996,60(2):189~196.
  • 4Pi Yong-Lin,Bradford M A,Uy B.In-plane stability of arches[J].International Journal of Solids & Structures,2002,39:105~125.
  • 5Pi Yong-Lin,Trahair NS.Non-linear bucking and post-buckling of elastic arches[J].Engineering Structures,1998,20(7):571~579.
  • 6Pi Yong-Lin,Trahair N S.Inelastic lateral buckling strength and design of steel rches[J].Engineering Structures,2000,22:993~1005.
  • 7ANSYS,Inc.ANSYS UIDL Programmer's Guide[M].SAS IP,Inc,1998.
  • 8ANSYS,Inc.Guide to ANSYS User Programmable Features[M].SAS,IP Inc.1998.
  • 9李元齐,沈祖炎.稳定分析中极值点失稳与分枝点失稳的跟踪策略及程序实现[J].土木工程学报,1998,31(3):65-71. 被引量:26
  • 10剧锦三,郭彦林,刘玉擎.拱结构的弹性二次屈曲性能[J].工程力学,2002,19(4):109-112. 被引量:33

共引文献21

同被引文献79

引证文献11

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部