期刊文献+

一种基于VARdnn-Tree的反向最近邻查询方法

Method of reverse nearest neighbor queries using VARdnn-Tree
下载PDF
导出
摘要 空间数据库中反向最近邻查询在低维查询时一般利用基于R-Tree的改进树作为索引结构,由于树型索引结构本身的限制,R-Tree等索引结构的查询在高维中都会出现维数灾难。针对这个问题,提出了一种基于VARdnn-Tree的索引结构,采用量化压缩的方法存储数据,能够有效地支持高维查询。 In spatial databases, the improved R-Tree is usually used as indexing structure in the research of low-dimension reverse nearest neighbor queries. Queries by indexing structures such as R-Tree will cause dimension disaster in high-dimension because of the limitation of tree indexing structure. To solve the problem, this paper proposed an indexing structure based on VARdnn-Tree. It adoped the method of the quantification compression to store data, thus could effectively support queries in high-dimension.
出处 《计算机应用研究》 CSCD 北大核心 2010年第5期1816-1819,共4页 Application Research of Computers
基金 黑龙江省自然科学基金资助项目(F200601)
关键词 反向最近邻查询 索引结构 量化压缩 reverse nearest neighbor queries index structure quantification compression
  • 相关文献

参考文献6

  • 1KORN F,MUTHUKRISHNAN S.Influence sets based on reverse nearest neighbor queries[J].ACM SIGMOD Record,2000,29(2):201-212.
  • 2GUTTMAN A.R-Trees:a dynamic index structure for spatial sear-ching[C]//Proc of ACM SIGMOD International Conference on Management of Data.1984:47-57.
  • 3董道国,梁刘红,薛向阳.VAR-Tree——一种新的高维数据索引结构[J].计算机研究与发展,2005,42(1):10-17. 被引量:9
  • 4WEBER R,SCHEK H J,BLOTT S.A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces[C]//Proc of the 24th International Conference on Very Large Data Bases.1998:194-205.
  • 5YANG C,LIN K I.An index structure for efficient REVERSE nearest neighbor queries[C]//Proc of the 17th International Conference on Data Engineering.2001:485-492.
  • 6SAKURAI Y,YOSHIKAWA M.The A-tree:an index structure for high-dimensional spaces using relative approximation[C]//Proc of the 26th International Conference on Very Large Data Bases.2000:516-526.

二级参考文献11

  • 1N. Beckmann, H. P. Kriegel, R. Schneider, et al.. The R-tree: An efficient and robust access method for points and rectangles. The SIGMOD Conf, Atlantic, NJ, 1990.
  • 2D. A. White, R. Jain. Similarity indexing with the SS-tree. The 12th Int'l Conf. on Data Engineering, New Orleans, LA, 1996.
  • 3N. Katayama, S. Satoh. The SR-tree: An index structure for high dimensional nearest neighbor queries. The ACM SIGMOD Int'l Conf. on Management of Data, Tucson, Arizon, USA,1997.
  • 4J. T. Robinson. The K-D-B-tree: A search structure for large multidimensional dynamic indexes. The ACM SIGMOD Int'l Conf. on Management of Data, Ann Arbor, Michigan, 1981.
  • 5R. Weber, H. J. Schek, S. Blott. A quantitative analysis and performance study for similarity-search methods in highdimensional spaces. The 24th Int'l Conf. on Very Large Databases, New York, San Jose, California, 1998.
  • 6N. Roussopoulos, S. Kelley, F. Vincent. Nearest neighbor queries. The ACM SIGMOD Int'l Conf. on Management of Data, San Jose, California, 1995.
  • 7S. Berchtold, C. Bohm, D. A. Keim, et al. A cost model fornearest neighbor search in high-dimensional data space. In: Proc.of the 16th ACM PODS. Tucson, Arizon, 1997. 78-86.
  • 8T. Yoshida, H. Akama, N. Taniguchi, et al. Similiary search index using vector approximation VA-Tree. 2000. http://www. ipsj. or. jp/members/Trans/Eng/02/2000/4106/article002.html.
  • 9D. A. Manolescu. Feature extraction--A pattern for information retrieval. The 5th Pattern Languages of Programming,Monticello, Illinois, 1998.
  • 10A. Guttman. R-trees: A dynamic index structure for spatial searching. The ACM SIGMOD Int'l Conf. on Management of Data, Boston, MA, 1984.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部