摘要
空间数据库中反向最近邻查询在低维查询时一般利用基于R-Tree的改进树作为索引结构,由于树型索引结构本身的限制,R-Tree等索引结构的查询在高维中都会出现维数灾难。针对这个问题,提出了一种基于VARdnn-Tree的索引结构,采用量化压缩的方法存储数据,能够有效地支持高维查询。
In spatial databases, the improved R-Tree is usually used as indexing structure in the research of low-dimension reverse nearest neighbor queries. Queries by indexing structures such as R-Tree will cause dimension disaster in high-dimension because of the limitation of tree indexing structure. To solve the problem, this paper proposed an indexing structure based on VARdnn-Tree. It adoped the method of the quantification compression to store data, thus could effectively support queries in high-dimension.
出处
《计算机应用研究》
CSCD
北大核心
2010年第5期1816-1819,共4页
Application Research of Computers
基金
黑龙江省自然科学基金资助项目(F200601)
关键词
反向最近邻查询
索引结构
量化压缩
reverse nearest neighbor queries
index structure
quantification compression