期刊文献+

基于商空间粒度聚类的异常入侵检测

Anomaly intrusion detection based on quotient space granularity clustering
下载PDF
导出
摘要 针对异常入侵检测技术中传统聚类方法需要被检测类大小均衡的问题,在商空间粒度理论的基础上,论述了商空间粒度变换可以使复杂问题在不同的粒度世界求解,最终使整个问题得到简化。分析了商空间划分与聚类操作的相似性,提出了基于商空间的粒度聚类方法,并将该方法与入侵检测技术相结合,构建了基于商空间粒度聚类的入侵检测系统,用于对KDD CUP 1999数据集的异常入侵检测。实验结果表明,该入侵检测系统的性能明显优于基于传统聚类方法的入侵检测系统,从而证明了该方法的正确性和有效性。 In view of the problem which traditional clustering methods need equilibrium detection class,this paper discussesd that quotient space granularity transformation could make complex problem to be solved in different granularity world basing on quotient space granularity theory, and ultimately simplified the whole problem.Then analyzed the similarity of the quotient space division and the clustering operation and put forward the method of granularity clustering based on quotient space. Moreover,combining the method and intrusion detection technology, constructed the intrusion detection system on the basis of quotient space granularity clustering and used the system to realize anomaly detection on the KDD CUP 1999 data sets. Finally experimental results show that the intrusion detection system is superior to other systems which is based on the traditional clustering methods.All these prove the correctness and effectiveness of the method.
作者 王丽芳 韩燮
出处 《计算机应用研究》 CSCD 北大核心 2010年第5期1911-1913,共3页 Application Research of Computers
基金 山西省自然科学基金资助项目(2007011042) 中北大学青年科学基金资助项目(2008)
关键词 商空间 粒度计算 聚类 异常入侵检测 quotient space granularity computing clustering anomaly intrusion detection
  • 相关文献

参考文献7

  • 1PORTNOY L,ESK N E,STOLFO S J.Intrusion detection with unlabeled data using clustering[C]// Proc of ACM CSS Workshop on Data Mining Applied to Security.New York:ACM,2001.
  • 2CH M PHLEE W,ABDULLAH A H,NOOR M S M,et al.Integrating genetic algorithms and fuzzy C-means for anomaly detection[C]//Proc of Annual IEEE NDICON.Washington,DC:IEEE,2005:575-576.
  • 3KRISHNAPURAM R,KELLER J M.A possibilistic approach to clustering[J].IEEE Trans on Fuzzy System,2003,1(2):87-88.
  • 4王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344. 被引量:264
  • 5LAZAREVIC A,ERTOZ L,KUMAR V,et al.Data mining:a comparative study of anomaly detection schemes in network intrusion detection[C]// Proc of the 3rd SIAM International Conference.Rotterdam:[s.n],2003.
  • 6STALLINGS W.High-speed networks and Internets:performance and quality of service[M].2nd ed.New York:Prentice-Hall,2002:148-152.
  • 7The third international knowledge discovery and data mining tools competition dataset[DB/OL].(1999-10-28)[2009-03-05].http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

二级参考文献1

  • 1Zdzis?aw Pawlak. Rough sets[J] 1982,International Journal of Computer & Information Sciences(5):341~356

共引文献263

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部