期刊文献+

基于耦合势能衍射检测的改进DCNON分割算法

Improved DCNON segmentation algorithm based on coupled potential diffract-detection
下载PDF
导出
摘要 分析了动态耦合振荡神经网络(DCNON)的数学模型和工作原理,以及在图像分割应用中的不足;根据振荡神经网络的动力学特点,借鉴机械波传播模型,提出一种基于耦合势能衍射检测的改进DCNON图像分割算法,通过改进动态耦合振荡神经网络框架和改善算法结构来提高DCNON的运算效率。通过MATLAB对改进DCNON算法的仿真,对比原始分割算法,验证了改进算法有效地压缩了运算时间。 This paper analyzed mathematical model, working rules and disadvantages in image segmentation application of dynamically coupled neural oscillator network (DCNON). Then according to dynamic characters of oscillator neural networks and mechanical wave propagation model, proposed an improved DCNON segmentation algorithm based on coupled potential diffract-detection, improved the computing efficiency of the DCNON by improving the dynamic coupled oscillation neural network framework and the algorithm structure. By MATLAB simulation for improving DCNON algorithm, compared to the original algorithm, the algorithm can effectively compress computational time.
出处 《计算机应用研究》 CSCD 北大核心 2010年第5期1994-1997,共4页 Application Research of Computers
关键词 图像分割 振荡神经网络 衍射检测 耦合势能 image segmentation oscillator neural network diffract detection coupled potential
  • 相关文献

参考文献12

  • 1PAL N R,PAL S K.A review on image segmentation techniques[J].Pattern Recognition,1993,26(9):1277-1294.
  • 2SEJNOWSKI,T J,HINITON G E.Separating figure from ground with a Boltzmann machine[M]//ARIBIB M A,HANSON A R.Vision,Brain,and Cooperative Computation.Cambridge,MA:MIT Press,1987:703-724.
  • 3MOZER M C,ZEMEL R S,BEHRMANN M,et al.Learning to segment images using dynamic feature binding[J].Neural Computation,1992,4(5):650-665.
  • 4GROSSBERG S,WYSE L.A neural network architecture for figure-ground separation of connected scenic figures[J].Neural Network,1991,4(6):723-742.
  • 5von der MALSBURG C.The correlation theory of brain function,Max-Planck-Institute for Biophysical Chemistry Internal Report 81-2[R].Gottingen:Max-Planck-Institute for Biophysical Chemistry,1981.
  • 6von der MALSBURG C,SCHNEIDER W.A neural cocktail-party processor[J].Biological Cybernetics,1986,54(1):29-40.
  • 7WANG De-liang,TERMAN D.Locally excitatory globally inhibitory oscillator networks:theory and application to pattern segmentation[C]//Proc of the 4th IEEE Workshop on Neural Networks for Signal Processing.Piscataway,NJ:IEEE Press,1994:283-286.
  • 8WANG De-liang,CESMELI D.Image segmentation based on motion/luminance integration and oscillatory correlation[C]//Proc of International Joint Conference on Neural Networks.Washington DC:IEEE Press,1999:2723-2728.
  • 9TETSUYA Y,KEN'ICHI F.Dynamical property of periodic oscillations observed in a coupled neural oscillator network for image segmentation[C]//Proc of the 1st International Conference on Bio-inspired Systems and Signal Processing.Portugal:Inst for Syst and Technol of Inf Control and Commun,2008:141-146.
  • 10CHEN Ke,WANG De-liang.A dynamically coupled neural oscillator network for image segmentation[J].Neutal Networks,2002,15(3):423-439.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部