期刊文献+

简化SIFT算法及其在商标图像检索中的应用 被引量:3

Simplified SIFT algorithm and application in trademark image retrieval
下载PDF
导出
摘要 针对商标图像形状简单、颜色单一的特点,提出了一种基于简化SIFT特征的商标图像检索新方法。采用DoG算子在多尺度空间检测图像的关键点,并利用圆环域结构替代SIFT原来的方形结构,对SIFT特征描述符的生成方式进行改进,使其具有计算简单、抗几何畸变性、抗旋转性等优点;然后在关键点匹配过程中,采用RANSAC算法去除错误匹配,从而提高匹配的稳定性与精确性。实验结果表明,该方法比原SIFT方法具有更快的计算速度和更高的匹配精度,能很好地应用在商标图像检索系统中。 According to the trademark image characteristics: simple shape, single color, this paper proposed a new method of simplified scale invariant feature transform(SIFT) feature algorithm for trademark images retrieval. Firstly, used a diffe-rence-of-Gaussian(DoG)function pyramid to identify potential interest points that were invariant to scale, and provided a new descriptor configuration based on a circular window to make it resistant to geometric distortion, rotation and reduce the dimension. In addition, used random sample consensus(RANSAC) to guarantee stability and improved the efficiency of matching. By comparing the experimental results show that this method has faster computing speed, higher precision and do well in trademark image retrieval.
出处 《计算机应用研究》 CSCD 北大核心 2010年第5期1998-2000,共3页 Application Research of Computers
关键词 商标图像 SIFT特征 图像匹配 图像检索 随机抽样一致性算法 trademark SIFT feature image matching image retrieval random sample consensus(RANSAC)
  • 相关文献

参考文献9

  • 1YANG Zhan-long,GUO Bao-long.Image mosaic based on SIFT[C]//Proc of International Conference on Intelligent Information Hi-ding and Multimedia Signal Processing.2008:1422-1425.
  • 2HU Xue-long,TANG Ying-cheng,ZHANG Zheng-hua.Video object matching based on SIFT algorithm[C]//Proc of IEEE International Conference Neural on Netwoks & Signal Processing.2008:412-415.
  • 3BELCHER C,DU Ying-zi.Region-based SIFT approach to iris recognition[J].Optics and Lasers in Engineering,2009,47(1):139-147.
  • 4XU Yi-ping,HU Kao-ning,TIAN Yan,et al.Classification of hyperspectral imagery using SIFT for spectral matching[C]//Proc of the 1st International Congress on Image and Signal Processing.2008:704-708.
  • 5ZHOU Hui-yu,YUAN Yuan,SHI Chun-mei.Object tracking using SIFT features and Mean Shift[J].Computer Vision and Image Understanding,2009,113(3):345-352.
  • 6BAGDANOV A D,BALLAN L,BERTINI M,et al.Trademark matching and retrieval in sports video databases[C]//Proc of Workshop on Multimedia Information Rethieval.2007:79-86.
  • 7LOWE D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 8孙坚伟,王汝笠.改进的MOPs图像匹配算法[J].科学技术与工程,2006,6(21):3439-3441. 被引量:4
  • 9韦娜,耿国华,周明全.结合颜色和空间信息的图像检索方法[J].计算机应用与软件,2003,20(8):3-4. 被引量:18

二级参考文献6

  • 1胡晓峰,刘毅.基于内容检索的颜色特征匹配方法[J].小型微型计算机系统,1996,17(12):6-11. 被引量:5
  • 2[2]Harris C,Stephens M.A combined comer and edge detector.In:Alvey Vision Conference.1988:147-151
  • 3[3]Fischler,M A.Bolles R,C.Random sample consensus:A paradigm for model fitting with application to image analysis and automated cartography.Communications of the ACM,1981 ;24(6):381-395
  • 4J. Huang, S. R. Kumar, M.Mitra,W.J.Zhu, R.Zabin, Image indexing using color correlograms. Proc. Computer vision and Pattern recognition.pp.762 ~768,1997.
  • 5M. Stricker and M. Orengo, Similarity of color images. SPIE - Storage and Retrieval for Image and Video Databases [J],pp.381 ~ 392,1995.
  • 6G. Pass and R. Zabih, Histogram refinement for content - based image retrieval[J] .IEEE Workghop on Applications of Computer Vision.pp.96 ~102 December, 1996.

共引文献20

同被引文献21

  • 1曹红杏,柳稼航,阮萍.基于SIFT特征的图像自动拼接[J].电视技术,2008,32(z1):146-148. 被引量:4
  • 2王晓峰,黄德双,杜吉祥,张国军.叶片图像特征提取与识别技术的研究[J].计算机工程与应用,2006,42(3):190-193. 被引量:114
  • 3Lowe D G. Distinctive Image Features Fromscale Invariant Keypoints[J]. International Journal of Computer Vision, 2004, 60(2) .91-110.
  • 4Lowe D G. Object Recognition From Local Scaleinvariantfeatures[C]//International Conference on Co mputer Vision, 1999 : 1150-1157.
  • 5Brown M, Lowe D G. Reeognising Panoramas [C]// Proc of the 9th International Conference on Computer Vision, 2003 : 1218-1225.
  • 6Se S, Lowe D G, Little J J. Vision-based Global Localization and Mapping for Mobile Robots[J]. IEEE Trans on Robotics, 2005, 21(3) 364-375.
  • 7Lindeberg T. Feature Detection with Automatic Scale Selection [J ]. International Journal of Computer Vision, 1998, 30(2) 79-116.
  • 8Gao J, Huang X H, Peng G, et al. A Quick Featuredeteeting Method Applied in Robot Vision [C]//Proc of IEEE International Conference on Meehatronics and Automation, 2007 : 736-743.
  • 9Schmid C, Mohr R, Bauckhage C. Comparing and Evaluating Interest Points [C]//Proc of the 6th International Conference on Computer Vision, 1998. 230-235.
  • 10LOWE D. Distinctive image features from scale-invariant key points[J].{H}International Journal of Computer Vision,2004,(2):91-110.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部