期刊文献+

基于自适应评价UPFC神经网络控制器设计 被引量:1

Adaptive Critic Design Based Neurocontroller For A UPFC Connected To A Power System
下载PDF
导出
摘要 对含UPFC(统一潮流控制器)的电力系统提出一种新型的非线性最优神经网络控制器。启发式动态规划(HDP)是自适应评价设计(ACDs)体系中的一员,采用HDP来设计UPFC神经网络控制器。和传统的PI控制器相比,这种神经网络控制器能够提供非线性最优控制。仿真结果表明,此种控制器具有很好的控制效果。 A novel nonlinear optimal neurocontroller for a unified power flow controller (UPFC) connected to a power system using artificial neural networks is presented. The heuristic dynamic programming (HDP), a member of adaptive critic designs (ACDs) family, is used for the design of the UPFC neurocontroller. The simulation result verified that the neurocontroller provides nonlinear optimal control with better performance compared to the conventional PI controllers.
出处 《微计算机信息》 2010年第13期69-71,共3页 Control & Automation
关键词 统一潮流控制器 神经网络 自适应评价设计 Unified power flow controller Neural network Adaptive critic design
  • 相关文献

参考文献6

  • 1曹海江,高沁翔.统一潮流控制器(UPFC)的控制策略研究[J].自动化技术与应用,2003,22(10):72-75. 被引量:2
  • 2SHEN D, LEHN P W. Modeling, Analysis and control of a current source inverter-based STATCOM [J]. IEEE Transactions on Power Delivery, 2002, 17(1):248-253.
  • 3丛延奇,谢君,张云.基于神经网络的多变量非线性自适应解耦控制研究[J].微计算机信息,2004,20(3):22-23. 被引量:4
  • 4VENAYAGAMOORTHY G K, HARLEY R G, WUNSCH D C. Dual heuristic programming excitation neurocontrol for generators in a multimachine power system [J]. IEEE Transactions on Industry Applications, 2003, 39(2):382-192.
  • 5MOHAGHEGHI S, PARK J W, HARLEY R G, VENAYAG-AMOORTHY G K, et al. An adaptive neural network identifier for effective control of a static compensator connected to a power system[C]. Paper Accepted for Publication in the Proceedings of the IEEE-INNS International Joint Conference on Neural Networks, 2003:20-24.
  • 6VENAYAGAMOORTHY G K, HARLEY R G, WUNSCH D C. Comparison of heuristic dynamic programming and dual heuristic programming adaptive critics for neurocontrol of a turbo generator [J]. IEEE Trans. Neural Networks, 2002, 13(3):764 - 773.

二级参考文献9

  • 1黄振宇,赵亮,陈寿孙,张宝霖.电力系统动态分析中统一潮流控制器的模型研究[J].清华大学学报(自然科学版),1997,37(S1):77-81. 被引量:8
  • 2武守远.[D].北京:电力科学研究院,1996.
  • 3[1]K.S. Narendra, and K. Parthasarathy, Identification and control of dynamical systems using neural networks, IEEE Trans. Neural Networks,1990, Vol. 1, No. 1,4-27
  • 4[2]D. Psaltis, A. Sideris, and A. A. Yamamura, A multilayered neural network controller, IEEE Control System Magazine, 1988, Vol. 8, No.3, 17-21
  • 5[3]F. Chen, Back-propagation neural networks for nonlinear self-tuning adaptive control, IEEE Control System Magazine, 1990, Vol. 10, 44-48
  • 6[4]F. Chen, and H. K. Khalili, Adaptive control of nonlinear systems using neural networks, Int. J. Control, 1992,Vol.55, No.6, 1299-1317
  • 7[5]F. Chen, Adaptive control of a class of nonlinear discrete-time system using neural networks, IEEE Trans. Automat. Contr., 1995, Vol.40, No.5,791-801
  • 8[6]S. Monaco, and D. Normand-Cyrot, Minimum-phase nonlinear discretetime systems and feedback stabilization, Proceedings of the 26th IEEE Conference on Decision and Control, 1987, Los Angeles, 979-986
  • 9[7]K. Zhu, X. F. Qin, and T.Y. Chai, A new decoupling design of selftuning multivariable generalized predictive control, Int. J. Adaptive Control and Signal Processing, 1999, Vol. 13, No. 2, 183-196

共引文献4

同被引文献48

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部