期刊文献+

基于重要解成分的信息素更新策略

Policy of Pheromone Update with Important Solution Components
下载PDF
导出
摘要 蚁群优化算法通过信息素记录搜索过程中获取的知识,并基于信息素搜索新的解,因此好的信息素更新策略对蚁群优化算法至关重要。针对不同解成分的贡献不同的特点,提出了新的信息素更新策略:首先识别候选解的重要成分,然后在更新信息素时只允许重要的解成分得到加强。基于新的更新策略更新的信息素更好地反映了优质解的特点,从而加快了信息的正反馈过程。以4阶欺骗问题为例,验证了新算法的有效性。 The pheromone trails in ACO are used to reflect the ants' search experience, and the ants exploit them to probabilistically construct solutions to the problem, so the quality of the pheromone is crucial to the success of ACO.The main factors affecting the duality of the pheromone include the policy of updating the pheromone and the duality of the constructed solutions. In order to improve the constructed solutions, this paper presented a method to analyze the invalid components of the constructed solution, and then repaired the invalid components with immunity operator. When the pheromone density on the components is updated according to the improved solution, they will more exactly reflect the character of high quality solution, so it will speed the positive feedback procedure. The results show that the use of immunity repairing helps to find competitive solutions in a relatively short time.
出处 《计算机科学》 CSCD 北大核心 2010年第5期203-205,236,共4页 Computer Science
基金 国家自然科学基金项目(60763012) 广西自然科学资金项目(0991104)资助
关键词 蚁群优化算法 信息素更新策略 欺骗问题 Ant colony optimisation Policy of pheromone update Deceptive problem
  • 相关文献

参考文献9

  • 1Dorigo M, Socha K. An Introduction to Ant Colony Optimization [R]. IRIDIA/2006-10. Universite Libre de Bruxelles, Belgium, 2006.
  • 2Dorigo M, Stutzle T. Ant Colony Optimization [M]. London:MIT Press, 2004.
  • 3Stutzle T, Hoos H. Max-min ant system[J]. Future Generation Computer Systems,2000,16(9) :889-914.
  • 4肖鹏,李茂军,张军平,叶涛.单亲遗传算法及其在物流配送系统中的应用[J].系统工程,2000,18(1):64-66. 被引量:99
  • 5柯良军,冯祖仁,冯远静.有限级信息素蚁群算法[J].自动化学报,2006,32(2):296-303. 被引量:17
  • 6Ding J ,Tang W,Wang L. Parallel Combination of Genetic Algorithm and Ant Algorithm Based on Dynamic K-Means Cluster [C]// Lecture Notes in Artificial Intelligence. Vol. 4114, Berlin: Springer, 2006 : 825-830.
  • 7丁建立,陈增强,袁著祉.遗传算法与蚂蚁算法的融合[J].计算机研究与发展,2003,40(9):1351-1356. 被引量:287
  • 8Blum C,Dorigo M. Deception in Ant Colony Optimization[C]//Lecture Notes in Artificial Intelligence. Vol. 3172, Berlin: Springer, 2004 : 118-129.
  • 9Eiben A E, Smith J E. Introduction to evolutionary computing [M]. Berlin Heidelberg: Springer- Verlag, 2003 : 191-193.

二级参考文献12

共引文献388

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部