期刊文献+

基于最大差值的二维边界Fisher的人脸识别 被引量:8

Face Recognition Based on Two-dimensional Maximum Difference Marginal Fisher Analysis
下载PDF
导出
摘要 提出了一种基于最大差值的二维边界Fisher的鉴别分析方法。该方法利用描述类间数据可分性的相似度矩阵Sp与描述类内数据紧致性的相似度矩阵Sc之差作为鉴别准则,从而避免了边界Fisher鉴别分析所遇到的小样本问题。所提方法是直接基于图像矩阵的,与以往的基于图像向量的方法相比,进一步提高了识别的正确率。另外,还揭示了基于最大差值的边界Fisher鉴别方法和边界Fisher鉴别的内在关系。在ORL和Yale人脸数据库上的实验表明,所提方法具有较高的识别率。 A novel two-dimensional maximum difference marginal Fisher discriminant analysis(2DMDMFA) was proposed for face recognition. The algorithm adopts the difference of similarity matrix Sp which characterizes the interclass reparability and similarity matrix S which characterizes the intraclass compactness as discriminant criterion. In such a way,the small sample size problem occurred in marginal Fisher analysis(MFA) is avoided. In addition,the construction of Sp and Sr is directly based on original training image matrices rather vectors. It is not necessary to convert the image matrix into high-dimensional image vector like those previous methods so that the recognition rate is raised. Besides, the relations between the maximum difference marginal Fisher analysis discriminant criterion and marginal Fisher analysis discriminant criterion for feature extraction were revealed. Experimental results on ORL and Yale face database show that the algorithm outperforms the traditional methods in recognition performance.
出处 《计算机科学》 CSCD 北大核心 2010年第5期251-253,264,共4页 Computer Science
基金 国家自然科学基金(No.60873151) 国家863计划项目(No.2006AA01Z119)资助
关键词 人脸识别 边界Fisher 二维差值边界Fisher 图像矩阵 Face recognition Marginal Fishcr analysis (MFA) Two-dimensional maximum difference marginal Fisher discriminant analysis(2DMDMFA) Image matrix
  • 相关文献

参考文献10

  • 1Duda R O, Hart P E, Stork D G. Pattern Classification (second edition) [M]. New York: John Wiley & Sons, 2000.
  • 2Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1997,19(7) : 711-720.
  • 3Liu C J, Wechsler H. Robust coding schemes for indexing and retrieval from large face databases[J].IEEE Trans. Image Processing, 2000,9(1) : 132-137.
  • 4金忠,杨静宇,陆建峰.一种具有统计不相关性的最佳鉴别矢量集[J].计算机学报,1999,22(10):1105-1108. 被引量:51
  • 5Yan S, Xu D, Zhang B, et al. Graph embedding and extensions: A general framework for dimensionality reduction [J ]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2007,29 ( 1 ) : 40-51.
  • 6Xu Dong, Yan Shuicheng, Tao Dacheng, et al. Marginal fisher analysis and its variants for human gait recognition and contentbased image retrieval[J].IEEE Trans. on Image Processing, 2007,16(11) :2811-2821.
  • 7宋枫溪,程科,杨静宇,刘树海.最大散度差和大间距线性投影与支持向量机[J].自动化学报,2004,30(6):890-896. 被引量:58
  • 8刘永俊,陈才扣.最大散度差鉴别分析及人脸识别[J].计算机工程与应用,2006,42(34):208-210. 被引量:23
  • 9Yang Jian, Zhang D, Frangi A F, et al. Two-Dimensional PCA: A New Approach to Appearance-Based Face Representation and Recognition [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2004,26 (1) : 131-137.
  • 10Yang Jian, Yang J Y. From image vector to matrix: a straightforward image projection IMPCA vs. PCA [J]. Pattern Recognition, 2002,35(9) : 1997-1999.

二级参考文献13

  • 1Fisher R A. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 1936, 7: 179-188
  • 2Vapnik V. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995
  • 3Foley D H, Sammon J W. An optimal set of discriminant vectors. IEEE Transactions on Computer, 1975,24(3): 281-289
  • 4Jin Z, Yang J Y, Hu Z S, Lou Z. Face Recognition based on uncorrelated discriminant transformation. Pattern Recognition, 2001, 34(7): 1405-1416
  • 5Bian Zhaoqi, Zhang Xuegong. Pattern Recognition. Beijing: Qinghua University Press, 2000 (in Chinese)
  • 6Hsu C, Lin C, A Comparison of Methods for Multiclass Support Vector Machines. IEEE Transaction on Neural Networks, 2002, 13(2): 415-425
  • 7FISHER R A.The use of multiple measurements in taxonomic problems[J].Annals of Eugenics,1936,7:178-188.
  • 8FOLEY D H,SAMMON J W.An optimal set of discriminant vectors[J].IEEE Trans Computer,1975,24(3):281-289.
  • 9BELHUMEUR P N.Eigenfaces vs.fisherfaces:recognition using class specific linear projections[J].IEEE Trans Pattern Anal Machine Intell,1997,19(7):711-720.
  • 10LIU C J,WECHSLER H.Robust coding schemes for indexing and retrieval from large face databases[J].IEEE Trans Image Processing,2000,9(1):132-137.

共引文献113

同被引文献97

  • 1叶敬福,詹永照.基于Gabor小波变换的人脸表情特征提取[J].计算机工程,2005,31(15):172-174. 被引量:25
  • 2Duda R O, Hart P E, Stork D. Pattern Classfication (2nd Edi- tion) [M]. New York, USA John Wiley g Sons, 2000 : 121-125.
  • 3Mika S, Ratsch G, Weston J, et al. Fisher discriminant analysis with kemelsl-C]ffProceedings of the 1999 IEEE Signal Proces- sing Society Workshop. Madison,WI,USA, 1999:41-48.
  • 4Struc V, Vesnicer B, Pavesic N. The Phase-based Gabor Fisher Classifier and Its Application to Face Recognition Under Var- ying Illumination Conditions [-C3 // Proceedings of the Interna- tional IEEE Conference on Signal Processing and Communica- tion Systems. Gold Coast, OLD, 2008:1-6.
  • 5Yang M H. Kernel eigenfaces vs. kernel Fisher-faces: face recog- nition using kernel methods [-C////Proceedings of the Fifth IEEE International Conference on Automatic Face and Gesture Recognition. Washington, DC, USA, 2002 : 215-220.
  • 6Sugiyama M. A real-time face recognition method on video se- quence using KFDA and NIB2DPCAEC ff Conference on Wire- less, Mobile and Sensor. Networks, USA, 2007 : 845-848.
  • 7Sugiyama M. Dimensionality Reduction of Multimodal Labeled Data by Local Fisher Discriminant Analysis[-J-]. Journal of Ma- chine Learning Research, 2007,8(5) : 1027-1061.
  • 8He X F, Niyogi P. Locality Preserving Projections [C//Pro- ceedings of Neural Information Proeessing System. Vancouver, Canada, 2003 ; 153-160.
  • 9Ahonen T, Hadid A, Pietikinen M. Face description with local binary patterns: application to face reeognition[-J]. IEEE Tran- sactions on Pattern Analysis and Machine Intelligence, 2006,28 (12) : 2037-2041.
  • 10Fang Yu-chun, Luo Jie, Lou Cheng-sheng. Fusion of Multi-direc- tional Rotation Invariant Uniform LBP Features for Face Re- cognition[C]//Proceedings of the 3rd International Conference on Intelligent Information Technology Application. NJ, USA, 2009 : 332-335.

引证文献8

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部