期刊文献+

三维广义磁流体方程组解的爆破准则 被引量:1

On the blow-up criteria to smooth solutions of the generalized magneto-hydrodynamic equations in R^3
原文传递
导出
摘要 研究广义磁流体方程组的光滑解的延拓,得到了一组由(u,b)或其旋度(ω,J)在Besov空间中的模刻画的光滑解的爆破准则。 The regularity criteria of smooth solutions to generalized magneto-hydrodynamic equations are studied. And some blow-up criteria are obtained, which are characterized by the Besov norm of (u,b) or (ω,J).
作者 李凤萍
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2010年第4期90-94,共5页 Journal of Shandong University(Natural Science)
基金 河南理工大学研究生学位论文创新基金(2008-M-30)
关键词 光滑解 爆破准则 BESOV空间 smooth solutions blow-up criteria Besov space
  • 相关文献

参考文献1

二级参考文献9

  • 1Beale, J.T., Kato, T., Majda, A.J. Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Comm. Math. Phys., 94:61-66 (1984)
  • 2Bergh, J., Lofstrom, J. Interpolation spaces, An Introduction. Springer-Verlag, New York, 1976
  • 3Caflisch, R.E., I. Klapper, I., Steele, G. Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD. Comm. Math. Phys., 184:443-455 (1997)
  • 4Frazier. M., Tortes, R., Weiss, G. The boundedness of Caldern-Zygmund operators on the spaces F^αq p.Rev. Mat. Iberoamericana 4:41-72 (1988)
  • 5Kozono, H., Ogawa, T., Taniuchi, Y. The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations. Math. Z., 242:251-278 (2002)
  • 6Majda, A.J. Compressible fluid flow and systems of conservation laws in several space variables. Applied Mathematical Sciences, 53, Springer-Verlag, New York, 1984
  • 7Majda, A.J. Bertozzi, A.L. Vorticity and incompressible flow. Cambridge Texts in Applied Mathematics,27, Cambridge University Press, Cambridge, 2002
  • 8wStein, E.M. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Princeton University Press, Princeton, 1993
  • 9Tribel, H. Theory of Function Spaces.Monograph in mathematics, Vol.78, Birkhauser Verlag, Basel, 1983

共引文献8

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部