期刊文献+

一种可用于数据集优化的网格相似度聚类算法研究

Research on Grid Similarity- based Clustering Algorithm Used in Data Set Optimization
下载PDF
导出
摘要 针对传统对象间相似度的度量方法的缺陷,提出了一种改进的网格相似度聚类算法。该算法引入了新的相似度度量标准,并使用密度阈值处理技术来定义网格的密度阈值,提高了聚类的精度。同时还利用信息熵的概念对高维数据集进行了处理,对数据集的维度具有很好的扩展性。在与传统算法的对比实验中显示出一定的优越性。 Aimed at the limitations of traditional measurement method on similitude among objects, an improved grid simi- larity -based clustering algorithm is put forward. It draws a new criterion to measure the similitude among objects, and defines the density threshold of grid by processing technology of density threshold to improve the precision of clustering. Besides, high dimensional data set is disposed by the technique of information entropy, it has the advantage over the tradi- tional clustering algorithm.
出处 《军事交通学院学报》 2010年第3期77-80,共4页 Journal of Military Transportation University
关键词 网格相似度 数据集 聚类算法 grid similitude data set entropy clustering algorithm
  • 相关文献

参考文献5

二级参考文献27

  • 1邱保志,沈钧毅.网格聚类中的边界处理技术[J].模式识别与人工智能,2006,19(2):277-280. 被引量:13
  • 2邱保志,沈钧毅.基于扩展和网格的多密度聚类算法[J].控制与决策,2006,21(9):1011-1014. 被引量:25
  • 3Han J W Kamber M 范明 孟小峰译.数据挖掘概念与技术[M].北京:机械工业出版杜,2001.147-158.
  • 4KAUFMAN L, ROUSSEEUW PJ. Finding Groups in Data: An Introduction to Cluster Analysis[ Z]. New York: John Wiley & Sons, 1990.
  • 5ESTER M, KRIEGEL H-P, SANDER J, et al. A density-based algorithm For discovering clusters in large spatial databases[ J]. In Proc1996 Int Conf Knowledge Discovery and Data Mining( KDD'96), 1996, 8:226 -231.
  • 6ANKERST M, BREUNIG M, KRIEGEL H-P, et al. OPTICS : Ordering points to identify the clustering structure[ A]. In Proc1999 ACM-SIGMOD Int Conf Management of Data(SIGMODX)9) [ C].Philadelphia, PA, 1999. 49 - 60.
  • 7WANG W, YANG J, MUNTZ R. STING: A statistical inFormation grid approach to apatial data mining[ A]. In Proc 1997 Int Corff Very Large Data Bases(VLDB'97) [ C]. AThens, Greece, 1997. 186 - 195.
  • 8SHEIKHOLESLAMI G, CHATTERJEE S, ZHANG A. Wave Cluster: A multi-resolution clustering approach For very. large spatial databases [ A]. In Proc 1998 Int Conf Very Large Data Bases(VLDB'98) [ C]. New York, 1998. 428 -439.
  • 9AGRAWAL R, GEHRKE J , GUNOPULOS D , et al. Automatic subspace clustering of high dimensional data For data mining applications[ A]. In Proc 1998 ACM-SIGMOD Int Cord Management of Data(SIGMOD'98) [ C]. Seattle, WA, 1998.94 - 105.
  • 10FISHER D. Improving inference through conceptual clustering[ A].In Proc 1987 AAAI Conf[C]. Seattle, WA, 1987.461 -465.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部