期刊文献+

关于半鞅市场的完备性

On the Completeness of Semi-martingale Market
下载PDF
导出
摘要 资产定价基本定理是金融数学中的基本结果。利用半鞅可料表示性与半鞅向量随机积分的Girsanov定理获得了半鞅市场完备的特征(定理2.1),它扩展了[3]中的结论。 The fundamental theorems of asset pricing are basic results in mathematical finance. Using thesemi-martingale predictable representation and the Girsanov Theorem for the semi-martingale vector stochasticintegral, we obtain the characteristics of the completeness for semi-martingale market(Theorem 2.1) ,which extendthe result in [3].
作者 屈田兴
出处 《模糊系统与数学》 CSCD 北大核心 2010年第2期171-174,共4页 Fuzzy Systems and Mathematics
基金 国家自然科学基金资助项目(60673090)
关键词 半鞅 H1 局部鞅 局部绝对连续性的概率测度 鞅变换 可料表示性 完备市场 H1 Martingale locale martingale local absolute continuous probability measure martingale transform predictable representation complete market
  • 相关文献

参考文献8

  • 1屈田兴,金治明.关于半鞅向量随机积分的两个结果[J].国防科技大学学报,2008,30(2):135-138. 被引量:2
  • 2屈田兴,金治明.关于半鞅的可料表示性[J].国防科技大学学报,2010,32(1):159-162. 被引量:1
  • 3Shiryaev A N,Chernyi A S.Vector stochastic integrals and the fundamental theorems of asset pricing[J].Tr.MIAN,2002,237:12-56.
  • 4Delbaen F,Schachermayer W.A general version of the fundamental theorem of asset pricing[J].Mathematische Annalen,1994,300(3):463-520.
  • 5Delbaen F,Schachermayer W.The fundamental theorem of asset pricing for unbounded stochastic processes[J].Mathematical Annalen,1998,312:215-250.
  • 6Chou C S.Caractérisation d'une classe de semimartingales[J].Lecture Notes in Mathematics,1979,721:250-252.
  • 7Emery M.Compensation de processus a variation finie non localement integrables[J].Lecture Notes in mathematics,1980,784:152-160.
  • 8Yan J A.Introduction to martingale methods in option pricing[Z].LN in Math.4,Liu Bie Ju Centre for Mathematical Sciences,City University of Hong Kong,1998.

二级参考文献14

  • 1屈田兴,金治明.关于半鞅向量随机积分的两个结果[J].国防科技大学学报,2008,30(2):135-138. 被引量:2
  • 2Chemy A, Shi4-yaev A. On Stochastic Integrals up to Infinity and Predictable Criteria for Integrability [J]. Seminaire de Probabilities xxxVIII, 2005, 1857: 165- 185.
  • 3Shiryaev A N, Chemyi A S. Vector Stochastic Integrals and the Fundamental Theorems of Asset Pricing[J]. Tr. MIAN, 2002, 237:12-56.
  • 4Gmery M. Une Topologie Sur Lespaee Des Semimartingales[ J]. Lecture Notes in Mathem-aties, 1979, 721 : 152 - 160.
  • 5Memin J. Espaces de Semi-martingales Et Changement de Probabilite[J]. Zeitschrift fur Wahrscheinlichkeits-theorie und Verwandte Gebiete, 1980, 52:9 - 39.
  • 6Delbaen F, Schachermayer W. A General Version of the Fundamental Theorem of Asset Pricing[ J]. Mathemafische Anvalen, 1994, 300(3) :463 - 520.
  • 7Delbaen F, Sehachermayer W. The Fundamental Theorem of Asset Pricing for Unbounded Stochastic Processes [J]. Mathematical Annalen, 1998, 312: 215-250.
  • 8Chou C S. Caracterisation Dune Classe de Semimarfingales[J]. Lecture Notes in Mathemat-ics, 1979, 721 : 250 - 252.
  • 9Emery M. Compensation de Processus a Variation Finie Non Localement Integrables[J]. Lecture Notes in mathematics, 1980, 784: 152- 160.
  • 10Yan J A. Introduction to Martingale Methods in Option Pricing [R]. LN in Math.4, Liu Bie Ju Centre for Mathematical Sciences, City University of Hong Kong, 1998.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部